

Knowledge Graph Construction from Heterogeneous Data Sources Exploiting Declarative Mapping Rules PhD Defense

David Chaves-Fraga, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Supervisor: Oscar Corcho

dchaves@fi.upm.es

dchavesf

16:00 - 28/06/2021 **O** Online

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

"Your impact will be as big as the quality of your pitch to explain the solution"

Pieter Colpaert

Introduction

Introduction

Introduction

Knowledge Graph Construction = Data Integration System (DIS) = <S, M, O>

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008). Linking data to ontologies. In *Journal on data semantics X* Lenzerini, M. Data integration: A theoretical perspective. In *Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*

Challenge I: KG construction in complex DIS

- rr:template "http://iasis.eu/{acc} {enst}";
- rr:class iasis:RBP_RNA_PhysicalInteraction];
- rr:predicateObjectMap [
- rr:predicate iasis:interactionScore;
- rr:objectMap [rml:reference "omixcore"]];
- 11 rr:predicateObjectMap [
- rr:predicate iasis:interaction involves RBP; 12
 - rr:objectMap [
 - rr:parentTriplesMap <TriplesMap2>]].

16 <TriplesMap2>

<TriplesMap1>

rr:subjectMap [

- rml:logicalSource [rml:source "dataSource1"]; rr:subjectMap [
- 19 rr:template "http://iasis.eu/Protein/{acc}"; 20 rr:class iais:Protein];
 - rr:predicateObjectMap [
- 22 rr:predicate iasis:protein isRelatedTo exon;
- 23 rr:objectMap [
- 24 rr:parentTriplesMap <TriplesMap3>;
- 25 rr:joinCondition [rr:child "enst"; rr:parent "enst";];]. 26

27 <TriplesMap3>

- 28 rml:logicalSource [rml:source "dataSource2"];
- 29 rr:subjectMap [
- 30 rr:template "http://iasis.eu/Exon/{ense}";
- 31 rr:class iais:Exon].

Challenge II: Querying messy tabular data

			Obta	ined 📃 Expe	ected	
SELECT 2ston name 2dat	to1 2dato2	?stop_	name	?date1	?date2]
HERE {		Noviciado		20191225	20191231-20200101	1
?stop1 gtfs:sameStop ? ?stop1 gtfs:name ?stop	?stop2 p_name	Colonia_Ja	rdin	2019-12-25	2019-12-31	
?stop1 gtfs:close_date ?stop2 gtfs:close_date	?date1 ?date2	Plaza_de_e	españa	2020-01-01	2020-01-06	
FILTER (?date1 != ?da	ite2)	Noviciado		2020-12-25	2019-12-31	
}		Noviciado	Noviciado		2020-01-01	
BusStop(w(id) MetroStop(w(i name(w(id),na close_date(w(name(w(id),na close_date(w(wheelchair(w(sameStop(w(id))) id)) ame) (id),close_da ame) (id),close_da id),wheelch d),u(id)) pp.csv	$\begin{array}{r} \leftarrow bus_s\\ \leftarrow metro\\ \leftarrow metro\\ \leftarrow metro\\ \leftarrow bus_s\\ ate) \leftarrow bus_s\\ ate) \leftarrow bus_s\\ air) \leftarrow metro\\ \leftarrow metro\\ \end{array}$	top(id,nai _stop(id,r _stop(id,r _stop(id,nai top(id,nai top(id,nai _stop(id,r _stop(nar	me,date) name,date,wheel name,date,wheel name,date,wheel me,date) me,date) name ne), t	chair) chair) chair) chaintaina Maintaina Reprodu	stne
id name	date	wheelchair	id	nar	Rous	
1 Colonia_jardin 2	20191225	0	1	Colonia Ja	231	Γ
2 Plaza_de_españa	20200101	1	2	Plaza De Esp	0101-20200106	
3 Noviciado 2	20191225	0	3	Noviciado	20191231-20200101	

Challenge III: Choosing mappings and engines

A new generation of KGC systems

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

State of the art: Mappings

KGC Engines

Engine	Туре	Mapping Rules	Written In	Evaluation	Limitation(s)	
RMLMapper	Materializer	RML (+FnO) + CSVW	Java	-	Performance&Scalability	
RocketRML	Materializer	RML (+FnO)	JavaScript	Ad-hoc	Memory consumption	
CARML	Materializer	RML (+FnO)	RML (+FnO) Java		Scalability	
Chimera	Materializer	RML Java		-	Memory consumption	
SPARQL-Generate	Materializer	SPARQL-Generate	Java	Ad-hoc	Scalability	
CSV2RDF	Materializer	CSVW	Java	-	Scalability	
COW	Materializer	CSVW	Python	-	Scalability	
Ontop	Materializer & Virtualizer	R2RML & OBDA	Java	BSBM, NPD	Support for RDB	
Morph-xR2RML	Materializer & Virtualizer	xR2RML	Java	-	Scalability & SPARQL	
Morph-RDB	Materializer & Virtualizer	R2RML	Java	BSBM	Support for RDB	
Squerall	Virtualizer	RML (+FnO)	Java	BSBM	SPARQL operators	
Ontario	Virtualizer	RML	Python	LSLOD	SPARQL operators	

Current status and limitations

GLOBAL ADOPTION OF DECLARATIVE KNOWLEDGE GRAPH CONSTRUCTION SYSTEMS

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

"As a computer scientist, the most important part of a research is the what, not the how"

Maria-Esther Vidal

Methodology

Identification of Limitations

Four limitations based on the analysis of the state of the art

Research Methodology

Objective I

Objective 1: Scalable and efficient construction of Knowledge Graphs

 \bigcirc

Hypothesis 1: It is possible to translate declarative mapping rules among different specifications.

Hypothesis 2: The exploitation of declarative annotations can enhance current virtual KGC systems	Hypothesis 4: Physical data structures and operators can be defined for scaling up KGC engines		Hypothesis 5: Optimizations for functional mapping rules can be applied to scale up the KGC				
				*			
Contribution 1.2: Extracting constraints from declarative ma enhancing VKGC Contribution 1.3: Automatic creation of functional wrappers declarative mapping rules	Contribution 1.4: Physical structures and associated operators for optimizing KGC						
Contribution 1.1: Mapping translation concept and characterization of its main properties							

A benchmark on transport data is able to stress and provide a full overview of the current KGC engines

Summary of objectives and contributions

Hypotheses:

Assumptions:

A1: Mapping rules and metadata descriptions are declarative and follow W3C standards

A2: The ontology for integrating the source data is available and is implemented in OWL.

A3: Mapping rules and metadata are available A4: Data are represented in formats that are not RDF

A5: Datasets are static, not streams.

New Generation of Knowledge Graph Construction Engines

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives

Contributions

- C1: Knowledge Graph Construction at Scale
- C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

"The primary goal of a researcher should be to continually challenge science with creative ideas"

Oscar Corcho

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

Evaluation Framework for Declarative Knowledge Graph Construction Engines from Heterogeneous Data Sources

KG Construction from Heterogeneous Data Source Exploiting Declarative Mapping Rules

Conformance Test Cases for the RDF Mapping Language (RML)

Heyvaert, P., **Chaves-Fraga**, **D.**, Priyatna, F., Corcho, O., Mannens, E., Verborgh, R., & Dimou, A. (2019). Conformance test cases for the RDF mapping language (RML). In *Iberoamerican KGSWC*. This contribution are the result of joint collaboration with Ghent University as a result of research visits and collaboration work in the context of the W3C

297 Test Cases covering:

- CSV, JSON, XML, MySQL, PostgreSQL, SQLServer
- Translated from R2RML Test Cases
- Semantically described by:
 - Evaluation and Report Language (EARL) 1.0 Schema
 - Test case manifest vocabulary
 - Test Metadata vocabulary
 - Data Catalog vocabulary
- Each Test Case includes: Data + Mapping + Expected Output KG
- Full info: http://rml.io/test-cases/ & https://rml.io/implementation-report/

Analysis of parameters that affect the construction of Knowledge Graphs

Chaves-Fraga, D., Endris, K. M., Iglesias, E., Corcho, O., & Vidal, M. E. (2019). What are the Parameters that Affect the Construction of a Knowledge Graph?. In *ODBASE*. This contribution is one of the result of joint collaboration with the Scientific Data Management Group from German National Library of Science and Technology (TIB), as a result of a research stay in the institution

Independent Variables

Experimental Setup

Engines (from <u>RML-Implementation-Report</u>):

- RMLMapper
- SDM-RDFizer

Datasets:

- Type: Naïve, Join-Duplicates, Relation-Type, Join-Selectivity
- Size: 1K, 10K, 50K rows

- Format: CSV

Results I: Naïve

Configurations 1-3: SDM-RDFizer on 1K, 10K and 50K rows Configurations 4-6: RMLMapper on 1K, 10K and 50K rows

Results II: Relation Types 10K

GTFS-Madrid-Bench: A Benchmark for (Virtual) Knowledge Graph Construction Engines

Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., & Corcho, O. (2020). GTFS-Madrid-Bench: A benchmark for virtual knowledge graph access in the transport domain. *Journal of Web Semantics* (Q2).

A comprehensive benchmark for (virtual) knowledge graph access

- Query translation over heterogeneous data sources
- Transport Domain (GTFS)
- Unified evaluation framework for heterogeneous OBDA/OBDI engines
- Tested over 5 tools from the state of the art
- Highly influenced by BSBM (queries) and NPD (data generation)

Variable	Requirement
Ontology	The ontology should include classes with data and object properties
Dataset	The virtual instance should maintain the constraints defined in the original dataset
Dataset	The virtual instance should be based on real world data
Dataset	The virtual instance should be distributed in different data formats
Mappings	The mappings should be able to indicate the format of the source
Mappings	The mappings should be expressed using well known mapping languages
Queries	The query set should be based on actual user queries
Queries	The query set should be complex enough with relations among same but also different data sources
Metrics	The metrics should provide relevant general information but also specific measures for each defined phase

Dataset

(1) Morph-CSV to generate GTFS-RDB-1

(2) VIG to scale-up the RDB

(3) Distribution based on user preferences

Mappings

TriplesMap	Source	Classes	# POM	# Predicates	# Objects	#ROM
shapes	shapes	gtfs:Shape	4	4	4	0
trips	trips	gtfs:Trip	8	8	5	3
calendar_rules	calendar	gtfs:Calendar	9	9	9	0
calendar_rules_dates	calendar_dates	gtfs:CalendarDateRule	2	2	2	0
stops	stops	gtfs:Stop	12	12	11	1
stoptimes	stop_times	gtfs:StopTime	9	9	7	2
routes	routes	gtfs:Route	8	8	7	1
agency	agency	gtfs:Agency	6	6	6	0
frequencies	frequencies	gtfs:Frequency	5	5	5	1
feed	feed_info	gtfs:Feed	6	6	6	0
service1	calendar	gtfs:Service	1	1	0	1
service2	calendar_dates	gtfs:Service	1	1	0	1

1 R2RML, 5 RML (YARRRML serialization),

1 xR2RML, 1 CSVW annotations + RML-Mapping generator

KG Construction from Heterogeneous Data Source Exploiting Declarative Mapping Rules

Queries

Query	#Triple	#Sources	ΟΡΤΙΟΝΔΙ	Aggregation	Other	FILTER		#Star-shaped groups	
Query	Patterns	#Jources	OTHONAL	Aggregation	features	equal to	relational	w/o constants	w/constants
q1	4	1						1	0
q2	5	1	yes				yes	0	1
q3	5	1	yes			yes		0	1
q4	9	2	yes					2	0
q5	5	2					yes	1	1
q6	3	2		yes		yes		0	2
q7	15	4	yes		DISTINCT	yes		1	3
q8	14	5	yes					5	0
q9	7	2	yes				yes	1	1
q10	4	2		yes	DISTINCT		yes	1	1
q11	12	3			NOT EXISTS		yes	3	2
q12	10	4		yes	GROUP BY			3	1
q13	6	1	yes					0	1
q14	8	3	yes		ORDER BY			3	0
q15	3	1				yes		0	1
q16	8	3					yes	2	1
q17	9	3						3	0
q18	8	5			UNION			4	1

Mappings and Queries Features

Dataset:

- Morph-CSV to generate GTFS-RDB
- VIG to scale-up
- Distribution based on user preferences

Queries:

- 18 queries covering different configurations and SPARQL operators
- Aligned with user stories in Madrid's transport domain
- Triple patterns: from 3 to 15; Sources: 1 to 5
- Single and chain star-shaped groups

Mappings:

- 10 Sources, 12 TriplesMap (12 Classes), 71 POM (70 P), 60
 SOM, 11 ROM
- 1 R2RML, 5 RML (YARRRML serialization), 1 xR2RML, 1 CSVW annotations + RML-Mapping generator

Evaluation

	Processor			Query																
Dataset	Cache	Name	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10	q11	q12	q13	q14	q15	q16	q17	q18
	Warm	Morph-RDB	5.85	02.07	E	1.82	W	1.86	1.97	E	26.02	1.80	E	1.81	2.06	W	1.89	E	2.11	E
		Ontario	18.02	E	ТО	E	E	E	E	W	E	E	E	E	E	W	E	E	E	E
GTFS-SQL-1	Cold	Morph-RDB	7.14	2.65	E	2.42	W	2.36	2.43	E	28.65	2.38	E	2.41	2.69	W	2.58	E	2.68	E
		Ontop	8.37	05.04	5.18	E	W	E	W	E	16.56	E	E	E	05.06	W	5.10	W	5.00	W
GTFS-	Warm	Morph-xR2RML	W	W	W	W	W	W	W	W	W	W	W	W	W	28.67	W	W	6.52	W
MongoDB-1	Cold	Morph-xR2RML	W	W	W	W	W	W	W	W	W	W	W	W	W	28.17	W	W	6.96	W
		Morph-RDB	6.94	03.04	E	2.78	E	2.78	ТО	Е	то	2.97	E	6.23	3.97	E	E	E	3.14	W
GTFS-CSV-1	Cold	Morph-CSV	15.11	10.88	E	10.72	E	9.95	10.84	Е	40.90	10.70	E	11.60	11.82	E	E	E	11.48	W
		Ontario	W	E	17.34	E	E	E	E	W	E	E	E	E	E	W	E	E	E	E
GTFS-XML-1	Cold	Ontario	Е	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E
GTFS-JSON-1	Cold	Ontario	18.04	Е	17.14	E	E	E	E	W	E	E	E	E	E	W	E	E	E	E
GTFS-MINEXT-1	Cold	Ontario	W	E	E	E	E	E	E	W	E	E	E	E	E	W	Е	E	E	E
GTFS-MAXEXT-1	Cold	Ontario	W	E	17.14	E	E	E	E	W	E	E	E	E	E	W	E	E	E	E

TO (TimeOut), W (wrong n° results), E (error executing the query)

• Only the SPARQL-to-SQL engines provide an acceptable support for SPARQL operators

- Virtual KGC proposals beyond relational databases are not mature enough and more research is needed
- The problem of translating SPARQL queries for querying raw data (CSV, JSON, XML) should not be understood as a technical case

GTFS-Madrid-Bench:

- First proposal able to provide a unique point for evaluating heterogeneous KGC engines*
- Open context in comparison with previous proposals (BSBM, NPD)
- Used in H2020-SPRINT to test KGC scalability and performance for NAP
- High support through open science principles

Necessary Improvements:

- Automatize generation of mapping rules beyond RML through mapping translation
- Incorporation of semantics in data generation process (e.g., start date before end date)
- Evaluate the impact of the benchmark parameters in KGC engines behavior
- Testing new capabilities of KGC engines (e.g., RDF-star gen, transformation functions, lists, etc.)

*Arenas-Guerrero, J., Scrocca, M., Iglesias-Molina, A., Toledo, J., Pozo-Gilo, L., Dona, D., Corcho, O., & **Chaves-Fraga, D.** (2021). Knowledge Graph Construction with R2RML and RML: An ETL System-based Overview. *In Proceedings of the 2nd International Workshop on Knowledge Graph Construction.*

Evaluation framework for Knowledge Graph Construction Engines (Past&Present&Future)

Conformance with the mapping language

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

Mapping Translation: Concept and desirable properties

Corcho, O., Priyatna, F., & Chaves-Fraga, D. (2020). Towards a new generation of ontology based data access. Semantic Web (Q1)

New generation of Knowledge Graph Construction Engines

Main properties:

- IPP: Information Preservation Property
- QRPP: Query Result Preservation Property

Main use-cases

Aim	Engine	Translation			
Access / Optimizations	Morph-CSV	RML+FnO-to-R2RML			
Optimizations	FunMap	RML+FnO-to-RML			
Maintenance / Schema	Morph-GraphQL	R2RML-to-GraphQL			
Maintenance	Morph-CSV	R2RMLIter-to-R2RML			
Maintenance	ShExML	ShExML-to-RML			
Maintenance	yarrrml-parser	YARRRML-to-RML			
Maintenance	Mapeathor	Excel-to-[R2]RML			
Optimizations / Semantics	ontop	R2RML-to-OBDA			

Exploiting Declarative Annotations for Virtual Knowledge Graph Construction

morph

Virtual Knowledge Graph Construction over Tabular Data

Chaves-Fraga, D., Ruckhaus, E., Priyatna, F., Vidal, M. E., & Corcho, O. (2021). Enhancing Virtual Ontology Based Access over Tabular Data with Morph-CSV. *Semantic Web* (Q1).

Chaves-Fraga, D., Pozo-Gilo, L., Toledo, J., Ruckhaus, E., & Corcho, O. (2020). Morph-CSV: Virtual Knowledge Graph Access for Tabular Data. In *International Semantic Web Conference (P&D)* (Core A).

Can we reuse existing optimizations proposed in SPARQL-to-SQL VKG construction?

SPARQL-to-SQL optimizations assumptions:

- There is a **native query language** for the input data source.
- There is an schema and typically includes **integrity and domain constraints** (cleaned and normalized).
- The data source is an **RDB instance or is a NoSQL database** instance with an RDB wrapper.

Challenges in SPARQL-to-CSV: Updated results, lightweight schema (no native query language), heterogeneity (messy data), not normalized

Objectives

KG Construction from Heterogeneous Data Source Exploiting Declarative Mapping Rules

Morph-CSV

Morph-CSV steps

GTFS-Madrid-Bench over Morph-RDB

Baseline: Morph-RDB

Approach 1 (complete RDB): Morph-CSV⁻ + Morph-RDB

Approach 2 (source selection): Morph-CSV + Morph-RDB

GTFS-Madrid-Bench over Ontop

Baseline: Ontop

Approach 1 (complete RDB): Morph-CSV⁻ + Ontop

Approach 2 (source selection): Morph-CSV + Ontop

GraphQL Server Generation from Declarative Mappings

Chaves-Fraga, **D**., Priyatna, F., Alobaid, A., & Corcho, O. (2020). Exploiting Declarative Mapping Rules for Generating GraphQL Servers with Morph-GraphQL. *International Journal of Software Engineering and Knowledge Engineering* (Q4)

Priyatna, F., **Chaves-Fraga, D.**, Alobaid, A., & Corcho, Ó. (2019). morph-GraphQL: GraphQL Servers Generation from R2RML Mappings. In *International Conference on Software Engineering and Knowledge Engineering* (Core B).

Morph-GraphQL

Main motivations:

- Common representation of mappings between source and GraphQL schema
- Shared vocabularies to avoid data silos
- Bootstrapping GraphQL development

Main features:

- Translation based on Chebotko's SPARQL-to-SQL algorithm
- Experimentation with Linköping GraphQL Benchmark v0.1
- Similar results as Virtuoso or VKGC (Morph-RDB)

Optimizations for Scaling-up Materialized Knowledge Graph Construction Techniques*

* These contributions are the result of joint collaboration with the Scientific Data Management Group from German National Library of Science and Technology (TIB), as a result of a research stay in the institution.

SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs.

Iglesias, E., Jozashoori, S., **Chaves-Fraga, D**., Collarana, D., & Vidal, M. E. (2020). SDM-RDFizer: An RML interpreter for the efficient creation of rdf knowledge graphs. In *Proceedings of the 29th ACM CIKM* (Core A). First 3 authors contributed equally to the research

SDM-RDFizer

PPT and PJTT

Predicate Tuple Table (PTT)

- stores RDF triples for a predicate generated so far **Hash table:**
- Key encoding subject and object
- Value the RDF triple.

">http://example.org/trips/1> schema:name "Sol-Retiro". http://example.org/trips/1 schema:name "Sol-Aluche".

Кеу	Value
http://example.org/trips/1_Sol-Aluche	<http: 1="" example.org="" trips=""> <schema:name> "Sol-Aluche"</schema:name></http:>
http://example.org/trips/2_Sol-Retiro	<http: 2="" example.org="" trips=""> <schema:name> "Sol-Retiro"</schema:name></http:>

PTT schema:name

Predicate Join Tuple Table (PJTT)

- stores values generated during execution of a join condition. Hash table:
- Key encoding the value of the attributes in the join
- Value set with the subject values associated with the values of the attributes in the hash key

JPTT TripleMap2_trips_routes

What is the impact of data duplication rate, data size and triples map types in the execution time of a knowledge graph creation approach?

FunMap

FunMap: Efficient Execution of Functional Mappings for Scaled-Up Knowledge Graph Creation

Jozashoori, S., **Chaves-Fraga**, **D**., Iglesias, E., Vidal, M. E., & Corcho, O. (2020, November). FunMap: Efficient Execution of Functional Mappings for Knowledge Graph Creation. In *International Semantic Web Conference* (Core A). First two authors contributed equally to the research. Fully reproduced paper

FunMap - Heuristic I

Function in an ObjectMap:

- Output file with function applied
- References used in function for join conditions
- Projecting input sources

```
<#TriplesMap1>
  rml:logicalSource [ rml:source "source1.csv";
                                                              <#TriplesMap1>
                       rml:referenceFormulation gl:CSV ];
                                                                 a rr:TriplesMap;
  rr:subjectMap [
                                                                 rml:logicalSource [ rml:source "projected1.csv
      rr:template "ias:/Mutation/{GENOMIC MUTATION ID}";
                                                                 rml:referenceFormulation gl:CS.
      rr:class ias:Mutation;];
                                                                 rr:subjectMap [
  rr:predicateObjectMap [
                                                                     rr:template "ias:/Mutation/{GENOMIC MUTATION ID}";
      rr:predicate iasis:isLocatedIn;
                                                                     rr:class ias:Mutation;];
      rr:objectMap <#FunctionMap1> ];
                                                                 rr:predicateObjectMap [
  rr:predicateObjectMap [
                                                                     rr:predicate iasis:isLocatedIn;
      rr:predicate iasis:tissue;
      rr:objectMap [
                                                                     rr:objectMap [
          rml:reference "Primary site" ]].
                                                                     rr·na
<#TriplesMap2>
                                                                     rr:joinCondition [
  rml:logicalSource [ rml:source "source1.csv";
                                                                          rr:child "Mutation genome position"
                      rml:referenceFormulation gl:CSV ];
                                                                         rr:parent "Mutation genome position"
  rr:subjectMap [
                                                                      1.1:1.
      rr:template "ias:/Gene/{Gene name}";
      rr:class iasis:Gene;];
  rr:predicateObjectMap [
                                                              <#TriplesMap2>
      rr:predicate iasis:isRelatedTo;
                                                                 rml:logicalSource [
                                                                                     rml:sou ce "projected2.csv"
      rr:objectMap <#FunctionMap1>].
                                                                                      rml:referenceFormulation al
                                                                 rr:subjectMap [
<#FunctionMap1>
                                                                     rr:template "ias:/Gene/{Gene name}";
  a fnml:FunctionTermMap;
                                                                     rr:class iasis:Gene;];
  fnml:functionValue [
                                                                 rr:predicateObjectMap [
      rml:logicalSource [ rml:source "source1.csv";
                                                                     rr:predicate iasis:isRelatedTo;
      rml:referenceFormulation gl:CSV ];
                                                                     rr:objectMap [
      rr:predicateObjectMap [
                                                                     rr:parentTriplesMap <#TriplesMap3>;
          rr:predicate fno:executes ;
                                                                     rr:joinCondition [
          rr:objectMap [
                                                                          rr:child "Mutation genome position";
                                                     Transforms to
              rr:constant ex:replaceValue ll:
                                                                         rr:parent "Mutation genome position"
      rr:predicateObjectMa
                                                                     ;];];].
          rr:predicate _x:value;
          rr:objectM p [
              rml:remember "Mutation genome position"]];
                                                              x#Tr<sup>±</sup> _resMap3>
      rr:predicateObject n [
                                                                 a rr:TriplesMap;
          rr:predicate ex:value__
                                                                 rml:logicalSource [ rml:source "output1.csv";
          rr:objectMap [
                                                                             rml:referenceFormulation al:CSV
              rr:constant "-"; ]];
                                                                         ];
      rr:predicateObjectMap [
                                                                 rr:subjectMap [
          rr:predicate ex:value3;
                                                                    rml:reference "functionOutput"
          rr:objectMap [
              rr:constant ":"; ]];].
                                                                 ].
```

FunMap - Heuristic II

Function in an SubjectMap:

- Main output file with function applied
- References used in function for join conditions
- Projecting input sources

FunMap - Experimental results (COSMIC dataset)

What is the impact of data duplication rate and different types of complexity over transformation functions in the execution time of a knowledge graph construction approach?

- Efficient techniques for constructing KGs at scale
- Empirical results indicate that SDM-RDFizer outperforms the state of the art by up to three orders of magnitude
- FunMap converts data integration systems in RML+FnO into equivalent data integration systems specified in RML
- FunMap generates data integration systems that enhance RML-complaint engines
- Empirical evaluations suggest that FunMap execution time of RML+FnO is reduced by up to 20 times

- Introduction
- State of the Art
- Research Methodology & Thesis Objectives
- Contributions
 - C1: Knowledge Graph Construction at Scale
 - C2: Evaluation Framework for Knowledge Graph Construction
- Conclusions and Future Work

"The terms data cleaning and data pre-processing should be removed"

An Anonymous Data Engineer

Knowledge Graph Construction at Scale

- **Exploitation of mapping rules** to enhance the construction of virtual and materialized knowledge graphs
- Heterogeneity of mapping specifications is a benefit, not a problem.
- Pre-processing and data cleaning steps need more attention.
- From **engineering to research** in materialization approaches.
- Performance and scalability is still an issue in KG construction.

Evaluation for Knowledge Graph Construction

					Engine Conformance	
Proposal	Benchmarking	Objectives	Domain	Testing Features		
Morph- CSV	Madrid-GTFS -Bench, BSBM	Implicit Constraints on VKGC	Transportation, E-Commerce	1-1 relation between concepts and sources, Synthetic data generator	TEST-CASES	Engine Behavio
Morph- GraphQL	Linköping GraphQL	GraphQL- to-SQL	E-Commerce	1-1 relation between concepts and sources, synthetic data generator		$ \begin{array}{c} $
SDM- RDFizer	COSMIC Dataset	Duplicates Removal + Joins	Biomedicine	N-1 relation between ontology concepts and sources, manual testbed generator		
FunMap	COSMIC Dataset + Transformation Functions	Duplicates Removal + Function Execution	Biomedicine	N-1 relation between ontology concepts and sources, manual testbed generator, simple and complex functions		

	Publicat	ions: 12	peer-review	v papers
--	----------	----------	-------------	----------

ı	J =	Journal	C = Conference	D = Demo	W = Workshop		
2, W1 C1			Priyatna, F., Chaves-Fraga, D., Alobaid, A., & Corcho, Ó. (2019).				
201		2019	morph-GraphQL: GraphQL Servers Generation from R2RML Mappings. In SEKE (Core B).				
		C2	Jozashoori, S., Chaves - Corcho, O. (2020, Nove	Jozashoori, S., Chaves-Fraga, D ., Iglesias, E., Vidal, M. E., & Corcho, O. (2020, November), FunMap: Efficient Execution of			
		2020	Functional Mappings for Knowledge Graph Creation. In International Semantic Web Conference (Core A)				
/I. E., & lccess over		C3	Iglesias, E., Jozashoori, S., Chaves-Fraga, D ., Collarana, D., & Vidal, M. E. (2020), SDM RDEizer: An RML interpreter for the				
		2020	efficient creation of RDF knowledge graphs. In <i>Proceedings</i> 29th ACM CIKM (Core A)				
J., Ruckhaus, hmark for virt	s, C4		Chaves-Fraga, D. , Endris, K. M., Iglesias, E., Corcho, O., & Vidal M E (2019) What are the Parameters that Affect the				
'S (Q2).		2019	Construction of a Knowl	/ledge Graph?. In ODBASE.			
Towards a <i>ntic Web</i> (Q1)		C5	Heyvaert, P., Chaves-Fraga, D. , Priyatna, F., Corcho, O., Mannens,				
		2019	RDF mapping language	e (RML). In <i>Iberoamerican KGSWC</i>			
O. (2020). GraphOl		W1	Chaves-Fraga, D. , Priyatna, F., Santana-Pérez, I., & Corcho, O.				
Japhoe		2018	(2018). Virtual Statistics Knowledge Graph Generation from CSV files. In SemStats-ISWC (Best Workshop Papers)				
s, E., & aph Access		D2	Alobaid, A., Chaves-Fra	Alobaid, A., Chaves-Fraga, D., Priyatna, F., & Corcho, Ó. (2019).			
	2019		GraphQL Servers generation from R2RML with morph-GraphQL (D). In <i>SEKE</i> (Core B). Best Demo Award				

Contribution	Publication
C1.1: Mapping Translation	J1, J2, J3, J4, C1, C2, W1
C2: Evaluation Framework for KGC	J2, C4, C5
C1.[2 3]: Enhancing virtual KGs	J1, J4, C1, D1, D2
C1.[4 5]: Materialized KGs at scale	C2, C3

 Chaves-Fraga, D., Ruckhaus, E., Priyatna, F., Vidal, M. E., & Corcho, O. (2021). Enhancing virtual ontology based access over tabular data with Morph-CSV. Semantic Web (Q1).

- J2
 Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus,
 E., & Corcho, O. (2020). GTFS-Madrid-Bench: A benchmark for virtual knowledge graph access in the transport domain. *JoWS* (Q2).
- J3
 Corcho, O., Priyatna, F., & Chaves-Fraga, D. (2020).
 new generation of ontology based data access. Seman

new generation of ontology based data access. *Semantic Web* (Q1

J4 Chaves-Fraga, D., Priyatna, F., Alobaid, A., & Corcho, O. (2020).
 2020 Exploiting Declarative Mapping Rules for Generating GraphQL Servers with Morph-GraphQL. *IJSEKE* (Q4)

 Chaves-Fraga, D., Pozo-Gilo, L., Toledo, J., Ruckhaus, E., & Corcho, O. (2020). Morph-CSV: Virtual Knowledge Graph Access for Tabular Data. In *ISWC* (Core A).

14 related papers

- J Goncalves, M., Chaves-Fraga, D., & Corcho, O. (2021). Handling Qualitative Preferences in SPARQL over Virtual Ontology-Based Data Access. In Semantic Web (Under Review)
- C Corcho, O., Chaves-Fraga, D., et al (2021). A High-Level Ontology Network for ICT Infrastructures. In International Semantic Web Conference (Resource Track).
- **C** Goncalves, M., **Chaves-Fraga, D.**, & Corcho, O. (2020). Morph-Skyline: Virtual Ontology-Based Data Access for Skyline Queries. In *International Joint Conference On Web Intelligence And Intelligent Agent Technology (WI-IAT'20)*
- **C** Iglesias-Molina, A., **Chaves-Fraga, D**., Priyatna, F., & Corcho, O. (2019). Enhancing the Maintainability of the Bio2RDF Project Using Declarative Mappings. In *Proceedings of the 12th International Conference on Semantic Web Applications and Tools for Healthcare and Life Sciences.*
- **D** Goncalves, M., **Chaves-Fraga, D.**, & Corcho, O. (2020). Morph-Skyline: Skyline Queries for Virtual Knowledge Graph Access. In *International Semantic Web Conference* (*Posters, Demos & Industry Tracks*).
- **D** Rojas, J., **Chaves-Fraga, D.**, Colpaert, P., Verborgh, R., & Mannens, E. (2017). Providing Reliable Access to Real-Time and Historic Public Transport Data Using Linked Connections. In *International Semantic Web Conference (Posters, Demos & Industry Tracks)*.
- Iglesias-Molina, A., Pozo-Gilo, L., Dona, D., Ruckhaus, E., Chaves-Fraga, D., & Corcho, Ó. (2020). Mapeathor: Simplifying the Specification of Declarative Rules for Knowledge Graph Construction. In International Semantic Web Conference (Posters, Demos & Industry Tracks).
- Arenas-Guerrero, J., Scrocca, M., Iglesias-Molina, A., Toledo, J., Pozo-Gilo, L., Dona, D., Corcho, O., & Chaves-Fraga, D. (2021). Knowledge Graph Construction with R2RML and RML: An ETL System-based Overview. In Proceedings of the 2nd International Workshop on Knowledge Graph Construction (ESWC).
- W Chaves-Fraga, D., Antón, A., Toledo, J., & Corcho, O. (2019). ONETT: Systematic Knowledge Graph Generation for National Access Points. In 1st International Workshop on Semantics for Transport (SEMANTICS).
- W Chaves-Fraga, D., Rojas, J., Vandenberghe, P. J., Colpaert, P., & Corcho, O. (2017). The tripscore Linked Data client: calculating specific summaries over large time series. In Proceedings of the 1st International Workshop on Decentralizing the Semantic Web (ISWC).
- **W** Chaves-Fraga, D., Gutiérrez, C., & Corcho, O. (2017). On the Role of the GRAPH Clause in the Performance of Federated SPARQL Queries. In International Workshop on Dataset PROFIling & Search (ISWC.)
- Iglesias-Molina, A., Chaves-Fraga, D., Priyatna, F., & Corcho, O. (2019). Towards the definition of a language-independent mapping template for knowledge graph creation. In *Proceedings of the Third International Workshop on Capturing Scientific Knowledge co-located with the 10th International Conference on Knowledge Capture (K-CAP 2019).*
- P Carriero Valentina, Chaves-Fraga D. et al. (2018). The Jedi Approach: Using The Force to Solve Linked Data Incompleteness. In Linked Open Data Validity A Technical Report from ISWS 2018
- P Badenes-Olmedo, C., Chaves-Fraga, D., et al. (2020). Drugs4Covid: Drug-driven Knowledge Exploitation based on Scientific Publications. arXiv preprint arXiv:2012.01953

7

Events and Community

Future Work

Future Work

Users in the loop for hybrid knowledge graph construction solutions

Knowledge Graph Construction from Heterogeneous Data Sources Exploiting Declarative Mapping Rules

David Chaves-Fraga, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Supervisor: Oscar Corcho

dchaves@fi.upm.es

dchavesf

28/06/2021

Results IV: Join Selectivity on 1K

Results III: Duplicates on Join 1K

Configurations 1-2: SDM-RDFizer on low and high duplicates Configurations 3-4: RMLMapper on low and high duplicates

Challenges VS Declarative Annotations in Tabular Data

Challenge	Detailed Challenge	Relevant properties
Updated results	Select relevant sources and columns	SPARQL + Mapping
	Describing concepts and properties	rr: class / rr:predicateMap
Lightweight Schema	Add header to a CSV file	csvw:rowTitles
	Column datatype	csvw:datatype
	Domain values	csvw:minimum, csvw:maximum
	Specify the format of a column	csvw:format
Listerageneity	Transform value	fnml:functionValue
Helerogeneity	Default for missing values	csvw:default
	Specify NULL values	csvw:null
	Specify NOT NULL constraint	csvw:required
	Integrity Constraints (PK & FK)	csvw:primaryKey / csvw:foreignKey
Not Normalized	Relationships between columns	rr:parentTriplesMap + rr:joinCondition
Sources	Multiple entities in one source	rr:TriplesMap with same LogicalSource
	Support for multiple values in one cell	csvw:separator

Step 1: Source selection

SELECT ?trip ?routeName ?routeType ?startTime ?endTime ?code WHERE {

?trip a gtfs:Trip .
?trip gtfs:route ?route .
?frequency a gtfs:Frequency .
?frequency gtfs:startTime ?startTime .
?frequency gtfs:endTime ?endTime .
?frequency gtfs:trip ?trip .
?route a gtfs:Route .
?route gtfs:shortName ?routeName .
?route gtfs:routeType ?routeType .

Select the relevant rules for the star shape groups of the input query

Step 1: Source selection

route_id	agency_id	route_short_name	route_long_name	route_type	route_code	route_url	route_color
4_1	CRTM	1	Chamartín- Valdecarros	1	401	http://crtm/ metro/4_1	2DBEF0
4_2	CRTM	2	Las Rosas - C. Caminos	1	401	http://crtm/ metro/4_2	ED1C24
4_3	CRTM	3	Villaverde Alto-Moncloa	1	401	http://crtm/ metro/4_3	FFD000
4_4	CRTM	4	Chamartín- Argüelles	1	401	http://crtm/ metro/4_4	B65518
5_C1	CRTM	C1	P.Pío- AeropuertoT4	2	109	http://crtm/ train/5_1	4FB0E5
5_C2	CRTM	C2	Guadalajara- Chamartín	2	109	http://crtm/ train/5_2	008B45
5_C3	CRTM	C3	Aranjuez- Escorial	2	109	http://crtm/ train/5_3	9F2E86
5_C4	CRTM	C4	Parla- Colmenar Viejo	2	109	http://crtm/ train/5_4	005AA3

Step 1: Source selection

/frequencies:	routes:
sources:	sources:
 [frequencies.csv~csv] 	- [routes.csv~csv]
s: mbench:freq/\$(trip_id)-\$(start_tim	ne) s: mbench:routes/\$(route_id)
po:	po:
 [a, gtfs:Frequency] 	- [a, gtfs:Route]
 [gtfs:startTime,\$(start_time)] 	 [gtfs:longName, \$(route_long_name)]
 [gtfs:endTime,\$(end_time)] 	- p: gtfs:RouteType
- p: gtfs:trip	o:
0:	 mapping: route-type
- mapping: trips	condition:
condition:	function: equal
function: equal	parameters:
parameters:	- [str1, \$(route type)]
- [str1, \$(trip id)]	- [str2, \$(route type)]
- [str2, \$(trip_id)]	
trips:	
sources:	
- [trips.csv~csv]	route-type:
s: mbench:trips/\$(trip_id)	sources:
po:	- [routes.csv~csv]
- [a, gtfs:Trip]	s: CONCAT(gtfs:,TRANS(\$(route type)))
- p: gtfs:route	po:
0:	- [a, gtfs:RouteType]
 mapping: routes 	- [gtfs:routeTypeCode,\$(route code)]
condition:	
function: equal	
parameters:	/
- [str1, \$(route_id)]	
- [str2, \$(route_id)]	

Routes and route-types has the same LogicalSource

Source contains information from independent entities

route_id	route_long_name	route_type	route_code
4_1	Chamartín- Valdecarros	1	401
4_2	Las Rosas - C. Caminos	1	401
4_3	Villaverde Alto-Moncloa	1	401
4_4	Chamartín- Argüelles	1	401
5_C1	P.Pío- AeropuertoT4	2	109
5_C2	Guadalajara- Chamartín	2	109
5_C3	Aranjuez- Escorial	2	109
5_C4	Parla- Colmenar Viejo	2	109

Step 2: Normalization

route_id	route_long_name	route_type	route_type	route_code
4_1	Chamartín-Valdecarros	1	1	401
4_2	Las Rosas - C. Caminos	1	1	401
4_3	Villaverde Alto-Moncloa	1	1	401
4_4	Chamartín-Argüelles	1	1	401
5_C1	P.Pío-AeropuertoT4	2	2	109
5_C2	Guadalajara-Chamartín	2	2	109
5_C3	Aranjuez-Escorial	2	2	109
5_C4	Parla-Colmenar Viejo	2	2	109

1) **route TriplesMap references:** route_id, route_long_name, route_type

2) route_type TriplesMap references: route_type, route_code

route_type	route_code	route_type_fn	route-type:
1	401	Subway	<pre>- [routes_types.csv~csv] s: gtfs:\$(route_type_fn)</pre>
2	109	Train	po: - [gtfs:routeTypeCode,\$(route_c

- 1. Remove duplicates from the input sources (from 8 to 2 rows)
- 2. Substitute values from CSVW annotations (csvw:default, csvw:null, csvw:format) directly over tabular data
- 3. Generate the SQL actions for the ad-hoc transformation functions (fnml:functionValue) UPDATE route_type_table SET route_type_fn = REPLACE(route_type, '1', 'Subway')

Execution Times

Memory Consumption

