LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

Title

Virtual Knowledge Graph Generation from Heterogeneous Data Sources Supervisor/Mentor Oscar Corcho (OEG-UPM, Madrid) Research Area Semantic Data Integration Project GoF4R, OASIS, SPRINT, SNAP, Datos 4.0

Motivating Example

Transport National Access Point and How to Linked with Open City Data:

- JSON
- XML
- CSV
- RDB
- RDF
- RESTAPI

Research Challenges

How to query the data on the Web?

Research Questions

- How can OBDA query-translation over heterogeneous data formats be enabled using or extending existing mapping languages and proposed optimization techniques/engines?
- How can federated query processing over virtual RDF graphs from heterogeneous data formats be planned adapting the techniques applied over native RDF?
- How can mappings be translated among different specifications without losing its own properties to be adapted to several scenarios?

Research Goals and Problem Formulation

Goals:

- Define and formalize the Mapping Translation concept.
- Enable OBDA query-translation over CSV using existing proposals of the state-of-the-art and OBDA R2RML-compliant engines
- Federated query engine over OBDA engines using mapping information.
- Benchmarking for OBDA query-translation engines that provide access to heterogeneous data formats.

Problem:

How to provide unified access to the data on the web without materializing them.

Potential Applications

- Public transport route planners with live information from the city.
- SPARQL/GraphQL-LD access to live open data
- Avoid the necessity of specific engines for each mapping language

What Existing Approaches Have Done?

- RDB2RDF (R2RML)
 - Advantages
 - Good Optimizations on SPARQL-to-SQL
 - W3C Recommendation
 - Federation delegated to SQL
 - Disadvantages
 - Focused only on RDB
 - CSV != RDB
- RML
 - Advantages
 - CSV, RDB, JSON, XML support
 - Emergence of its use (Ontario, CARML, PolyWeb)
 - Disadvantages
 - Focused on RDF materialization
- CSVW
 - Advantages
 - W3C Recommendation
 - Specific properties of the field
 - Disadvantages
 - Focused on RDF materialization

Initial Results

• **morph-CSV:** OBDA query translation for CSV files (to submit)

Experimental Results

OBDA for CSV (Transport Data):

R: Running Time I: Index Time T: Total Time

D	RML-Mapper			Morph-RDB			RMLC-CSV		
	R	Ι	Т	R	Ι	Т	R	Ι	Т
d1	182.00	0	182.00	1.07	0	1.07	0.98	0.02	1.00
d2	42.64	0	42.64	2.27	0	2.27	0.85	0.01	0.86
d3	50.01	0	50.01	2.89	0	2.89	1.09	0.01	1.10
d4	343.79	0	343.79	2.02	0	2.02	2.52	0.13	2.64
d5	594.47	0	594.47	1.34	0	1.34	0.67	0.01	0.68
d6	132.02	0	132.02	0.42	0	0.42	0.51	0.01	0.53
d7	>10h	0	>10h	54.97	0	54.97	6.00	0.42	6.42
d8	>10h	0	>10h	>10h	0	>10h	23.32	0.01	23.34

Initial Results

• **morph-GraphQL:** GraphQL resolver generation from R2RML (submitted)

Initial Results

morph-CSV: RMLC-Iterator for statistics CSV files (published)

Triples Map 2016 Scolumn			
	<triplesmanjanuary></triplesmanjanuary>		
rr:logical lable	< mpicsiviapsandary>		
rr:tableName "\"2016–P21\"";			
rmlc:columns ["Jan","Oct","Dec"];	rr:logicalTable [
rmlc:dictionary {"Jan":"January","Oct":"October","Dec":"Decem	rr:tableName "Statistics2016"		
1:			
11],		
rr:subjectMan [
a rr:Subject:	rr:subjectMap [
a II. Subject,	a rr:Subject; rr:template "www.ex.com/January";		
rr:template nttp://ex.org/2016{\$column}";	rr:class ab:Observation:		
rr:termType rr:TRT;	1.		
rr:class qb:Observation;];		
];			
	rr:predicateObjectMap[
rr:predicateObjectMap[rr:predicate ex:month:		
rr:predicate sltsy:month:	resolution [resonant (interval: January");];		
rr:objectMan [fr:objectiviap [fr:constant interval:January ;];		
muterem Trans revi ID I.];		
rr:constant "http://reference.data.gov.uk/def/intervals/{\$alias}	rr:predicateObjectMap[
];	munadiasta anumumbarOfAminala		
];	mpredicate ex:numberOfAmvais;		
	rr:objectMap [rr:column "Jan";];		
rr:predicateObjectMap[];		
rr:predicate sltsy:numberOfArrivals:			
rr:objectMan [reunradiaataObiaatMan[
resterm Type rest iteral:	m.predicateObjectWap		
$\frac{1}{1} = \frac{1}{2}$	rr:predicate qb:dataSet;		
rr:column {\$allas};	rr:objectMap [rr:constant "ex:Arrivals";];		
rr:datatype xsd:integer;]:		
];	,r		
];			

Experimental Results

RMLC-Iterator:

Features	Statistics from S	Sri Lanka Touism	EautoStat-Inmigration		
	R2RML	RMLC	R2RML	RMLC	
Total lines	~700	74	~2800	<70	
TriplesMap	12	1	>40	1	
PredicateObject Maps	60	5	>170	4	

Lessons Learned

- OBDA isn't only SPARQL-to-SQL
- CSV are one of the most formats for exposing data on the web
 - This isn't going to change soon (the administration won't publish RDF)
 - We wouldn't be data providers (RDF materialization)
- Decentralization is needed
 - Google Maps spend days updating its data
- Mapping languages contain useful information
- Mapping languages don't have to resolve ad-hoc problems
- Mapping languages should be aligned among others
 - Try to reuse optimized frameworks

Limitations and Future Work

Limitations:

- Generation of mappings/rules
- Optimization techniques over the query translation process
- CSV supported by RDBMS
- Lack of Benchmarking for an objective evaluation
- Focused only in CSV format

Future work:

- Benchmarking
- Mapping translator concept
- Federation

Timeline for Future Work

Organization:

- VKG2019 Tutorial at ESWC2019 (OEG team)
- Workshop on KG Building at ESWC2019 (OEG, RML and J. Sequeda)
- Open Summer of Code 2019 (Madrid July 2019)

OEG 2019:

- morph-CSV: Enabling OBDA query-translation over CSV files (written)
- Mapping Translation Concept (written)
- OBDA Benchmarking for Heterogeneous Data Sources (on-going)

TIB (March-June):

- Federated query processing over OBDA engines and Heterogeneous Data Sources
- Intensive collaboration with Scientific Data Management Group

Publications

Published:

- David Chaves-Fraga et al. Virtual Statistics Knowledge Graph Generation from CSV files. In:Emerging Topics in Semantic Technologies: ISWC2018 Satellite Events. Best paper award at SemStats2018
- Rojas Melendez, J. A., Chaves, D., Colpaert, P., Verborgh, R., & Mannens, E. (2017). Providing reliable access to real-time and historic public transport data using linked connections. In ISWC2017 (Demo)
- Chaves-Fraga, D., Rojas, J., Vandenberghe, P. J., Colpaert, P., & Corcho, O. (2017). The tripscore Linked Data client: calculating specific summaries over large time series. In DeSemWeb2017
- Chaves-Fraga, D., Gutierrez, C., & Corcho, O. (2017). On the Role of the GRAPH Clause in the Performance of Federated SPARQL Queries. In PROFILES@ ISWC2017.

Under Review:

- GraphQL Schema and Resolver Generation fromR2RML Mappings (SEKE2019)
- Conformance Test Cases for the RDF Mapping Language (RML) (KGSWC2019)