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Abstract

Knowledge Graphs are commonly organised according to the structure of
existing ontologies, which define the concepts, relations, and restrictions of
the domain of the KG. There are ontology-dependent assets that guide how
data from heterogeneous sources is integrated, transformed, validated, and
exploited in the KG, such as mapping rules and validation constraints. As
ontologies evolve over time, these changes must be consistently reflected in
the dependent assets, ensuring that the resulting KG remains aligned with
the updated ontology. While ontology evolution has been widely studied,
the propagation of changes to dependent artifacts remains an open challenge,
requiring manual effort that makes the process slow, error-prone, and costly.
In this paper, we present OntoRipple, a set of algorithms integrated into a
tool that automates the propagation of ontology changes into RML mappings
and SHACL shapes to construct and validate Knowledge Graphs, ensuring
consistency with the evolving ontology in a fully declarative workflow.
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Metadata

Nr. | Code metadata description Metadata

C1 | Current code version v1.0

C2 | Permanent link to code/repository | https://github.com/oeg-upm/0
used for this code version ntoRipple

C3 | Permanent link to Reproducible | https://doi.org/10.5281/zeno
Capsule do.17313224

C4 | Legal Code License Apache License, version 2.0.

C5 | Code versioning system used Git

C6 | Software code languages, tools, and | python
services used

C7 | Compilation requirements, operat- | python 3.9 ramel-yaml 0.18.10, rd-
ing environments & dependencies flib 7.1.1, coloredlog 15.0.1, yatter

2.0

C8 | If available Link to developer docu- | https://github.com/oeg-upm/0
mentation/manual ntoRipple?tab=readme-ov-file

C9 | Support email for questions diego.conde.herreros@Qupm.es o

Table 1: Code metadata

1. Motivation and significance

An ontology is the specification of a shared conceptualization that describes
structural and domain-specific knowledge for a variety of tasks, such as data
integration, transformation and homogenization processes [I]. Ontologies are
implemented using formal declarative languages such as RDF Schema [2],
and OWL [3]. Knowledge graphs (KGs) may be created natively or from
heterogeneous sources and formats (RDB, CSV, JSON, etc.) using a set of
logical rules (or mappings) that establish the underlying relation between
the classes and properties from an ontology and the data sources. These
mapping rules can be described using languages such as R2RML [4], RML [5],
ShExML [6], and SPARQL-Anything [7]. Additionally, the generated KG
has to be validated against a set of constraints to ensure that the data is
correctly generated. Validation rules can be described by languages such as
SHACL [8] and ShEx [9]. Both RML and SHACL have been standardized
at W3C and widely adopted within the semantic web community through
real-world initiatives such as PPDS [10], ERA [11], ISS [12], and Graph-
Massivzer [13].
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Ontologies evolve over time due to changes in domain knowledge or concep-
tualization, which must be consistently propagated to dependent assets such
as RML mappings and SHACL shapes to maintain KG consistency [14] [15].
The evolution of ontologies has been studied in previous works [14], such as
defining change operations [16], ontologies to describe these changes [17, [1§],
and creating ontology engineering methodologies that consider ontology evo-
lution [19, 20]. The semantic related artifacts, such as the mapping rules
used to construct the graph, the shapes used for validating the graph, or
the SPARQL [21] queries for exploiting the graph, may need to change ac-
cordingly. This task is still largely performed manually, making it a labor-
intensive and costly process. This is mainly due to the lack of standard
frameworks and supporting tools to manage the evolution of interrelated
artifacts involved in Knowledge Graph construction and validation.

There have been theoretical studies of how ontology evolution impacts the
RML mappings, such as [22], where mappings are updated so that they
answer the competency questions for DL-Liteg ontologies. In the context
of KG validation, despite the tools and resources focused on the automatic
creation of SHACL shapes [23] 24] 25], 26] no explicit work has been focused
on the evolution of SHACL with respect to the ontology.

This paper presents OntoRipple [27], a tool that propagates ontology changes
to its related RML [5] mappings and SHACL [§] shapes. The tool propagates
25 distinct change operations from the OWL Change Ontology that cover
changes on OWL classes, properties, class relations, property relations, and
property characteristics to RML and SHACL. When an assumption is made
regarding how a change should be propagated in RML mappings the modified
triples are added to review mappings for the user to check. This allows
knowledge graph engineers to construct and validate the updated KG with
minimal labor.

Problems and Objectives: To address the problem of updating semantic ar-
tifacts when an ontology evolves in a KG-driven project.

Proposed approach: OntoRipple, a tool that queries over the change descrip-
tion in RDF, processes the operations in a specific order, and performs the
corresponding changes over the semantic artifacts in a fully declarative ap-
proach.

Contributions: (i) the OntoRipple software (ii) the declarative SPARQL tem-
plates implementing the propagation logic, (iii) validation of the tool in a
real-world use case [10].

The remainder of the article is structured as follows. Section [2] will provide
a detailed description of the OntoRipple tool, its software architecture, and
functionalities. Section [3| will provide an illustrative example of the usage of
the tool in its original use case, the PPDS project. The novelty, contributions,
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Figure 1: Diagram of the OntoRipple tool, its steps, inputs, and outputs.

and impact will be discussed in Section [l and the conclusions, limitations,
and future work will be reflected upon in Section [5

2. Software description

2.1. Preliminaries: RML €& SHACL

A short overview is provided to clarify which RML and SHACL elements are
affected by ontology changes.

RML defines how data from heterogeneous sources (CSV, JSON, relational
DBs, etc.) is transformed into RDF triples using different ways of gen-
erating RDF terms such as constant values (rml:constant), references (
rml:reference), and URI templates (rml:template). They are used into
the maps of subjects (rml:subjectMap), predicates (rml:predicateMap),
and objects (rml:objectMap) that make up the triples that populate the
KG. SHACL defines shapes and constraints for validating RDF data, ensuring
structural and semantic consistency. These constraints are applied to nodes
(sh:NodeShape), and properties (sh:PropertyShape), and focus on classes
(sh:targetClass, sh:class), property datatypes (sh:datatype), or en-
force SPARQL query-based constraints (sh:SPARQLConstraintComponent).

2.2. Software architecture

The tool follows a modular pipeline architecture. An overview of the soft-
ware is depicted in Figure[I] The tool takes as input the change description
in RDF, compliant with the OWL Change Ontology (OCH) [I§], the out-
dated RML mappings for the previous ontology version, the outdated SHACL
shapes for the previous ontology version, and the current ontology version,
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python3 -m ontoripple --changes path_to_change_kg.nt
--mapping path_to_old_mapping.rml.ttl

--shapes path_to_old_shapes.sh

--ontology path_to_new_ontology.ttl

--new path_output_mappings.rml.ttl

Listing 1: Execution Example

it is required for inference tasks when propagating changes. The change op-
erations that are applied to the semantic artifacts are atomic in nature. An
atomic change is the smallest change that can be recorded between two ver-
sions of an ontology, for OWL ontologies this is the addition/deletion of an
axiom. By processing atomic changes the ambiguity of change operations is
reduced to a minimum.

Change Propagation Engine: This is the component that starts the
change propagation process. There is a total of 25 change operations from the
OWL Change Ontology that OntoRipple provides support for. It processes
changes in a predefined order since some change operations have to take
place before others so that the intended effect can take place. For instance,
if within a changelog there are AddClass and AddSubClass changes involving
the same class, then the AddClass change would have to take effect first to
add the TriplesMap/NodeShape before the subClass relationship is added.
In table |2 it can be seen how it was ordered and which change operations
have an effect on mappings and which ones have an effect on shapes. The
number of change operations that have an effect on SHACL shapes is higher
than those that have an effect on RML mappings because most class rela-
tions, property relations, and property characteristics have very little effect
on how the data is materialized, but are very important for the validation
rules for that data, and have a higher impact. The tool, in that order, calls
on the functions that correspond to the change type for each of the semantic
artifacts that have been provided as a parameter.

Evolution Handlers: The evolution handler contains 35 different functions
that apply the change operations of OCH to the RML mappings and the
SHACL shapes. The Add/Remove Characteristic change operations provide
support for seven different OWL 2 property characteristics. In OWL, prop-
erties are fundamentally divided into object properties and data properties
based on the type of values they relate to. The other types of OWL proper-
ties are not distinct property kinds but property characteristics, since they
capture behavioral semantics rather than structural typing and have been
modeled in OCH as property characteristics. The change operations that are



Table 2: Change Operations Processing Order and Supported Artefacts

Order Change Operation RML SHACL

1 Add Class v v
2 Add Subclass v v
3 Add Object Property v v
4 Add Data Property v v
5 Remove Class v v
6 Remove Subclass v v
7 Remove Object Property v v
8 Remove Data Property v v
9 Deprecate Entity v v
10 Revoke Deprecation v v
11 Rename Entity v v
12 Add Equivalent Class v
13 Remove Equivalent Class v
14 Add Disjoint Class v
15 Remove Disjoint Class v
16 Add Characteristic v
17 Remove Characteristic v
18 Add Inverse Property v
19 Remove Inverse Property v
20 Add Disjoint Property v
21 Remove Disjoint Property v
22 Add Subproperty v
23 Remove Subproperty v
24 Add Equivalent Property v
25 Remove Equivalent Property v

supported by the tool are those that Add, Remove, Deprecate, Undeprecate,
and Rename the main entities in OWL ontologies: classes, properties, anno-
tations, class relations, property relations, property characteristics, domains,
ranges, and individuals. Most of the change operations only require the
change description in RDF and the outdated mappings/shapes as parame-
ters, but others require the ontology to be provided for information regarding
datatype and parentage relations between terms.

Declarative SPARQL queries: The tool uses SPARQL queries for graph
manipulation for updating the mappings and shapes. The software follows a
fully declarative pipeline, since the SPARQL queries specify what the pattern
of triples that are desired is, it is up to the SPARQL engine to decide how
to obtain those triplets, making this software very adaptable. The SPARQL
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queries used for enacting the changes on the semantic artifacts improve main-
tainability, since those are not only in the code, but also in a set of templatesﬂ
as seen in Figure[I] and can be easily adapted for a wide variety of the com-
ponents of RML and SHACL, and cases more specific than those covered.
As seen in the Figure [I| the output of the tool is the updated set of SHACL
shapes, the updated set of RML mappings, the file with the deprecated
mappings (SHACL has a component for deprecating, so it does not need
its own file), and a file with the RML mappings to be reviewed by the user
whenever an assumption regarding inherited predicate object maps has been
made by the tool.

2.3. Software functionalities

The OntoRipple tool provides functionalities for the automatic propagation
of changes from ontology to RML mappings and SHACL shapes to ensure
consistency as ontologies evolve.

The core functionalities of the tool are the following:

1. Propagate changes over existing or upcoming W3C recom-
mendations: The tool provides support for applying ontology changes
to SHACL and RML. Both of these standards are widely used in
academia, industry, and European projects. There are queries defined
for each of the change operations and each of the artefacts. For in-
stance, in RML mappings TriplesMaps are created/deleted when a class
is added /removed from the ontology. In SHACL if an inverse property
is added/removed an sh:SPARQLConstraintComponent is added/re-
moved that ensures that the constraint is being enforced.

2. Review System: In the Remove Class change operation, when re-
moving a class if that class has a parent class in the ontology the
PredicateObjectMaps can either be removed or added to the parent
class’s TriplesMap instead of being removed. In our tool when this
happens those PredicateObjectMaps are inserted in a new graph and
exported to the Review Mappings file to be reviewed by the user.

3. Illustrative examples

[ustrative examples from different use cases for this research will be pro-
vided. First, there is the Emolex| ontology, an ontology that semantically
models emotional lexica, which will be used to exemplify the step-by-step

"https://github.com/oeg-upm/OntoRipple/tree/main/queries
Znttps://w3id.org/def/emolex
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propagation of a single change to RML and SHACL shapes. Then, we will
provide a wider example of the usage of the Ontoripple tool to propagate an
entire changelog for the eProcurement ontology, which models procurement
data for the member states of the European Union. Data on the changes,
and the structures affected from RML and SHACL will be provided, to test
the suitability of the tool for production environments.

3.1. Atomic Change FExecution Fxample

The Emolex ontologyf’|is a domain-specific ontology designed to semantically
model emotional lexica. It provides a vocabulary to represent emotional
words and their associated metrics, such as valence, arousal, and dominance,
based on psychological models. The EmoW-KGfY is a large-scale knowledge
graph aligned with the EmoLex ontology. It currently integrates 71,284 emo-
tional words sourced from 18 existing datasets, annotated with their corre-
sponding affective scores, which are represented in almost 2 million RDF
triples. EmoW-KG is the result of a reproducible and modular construction
pipeline using standard technologies such as RML and SHACL to facilitate
the incorporation of new sources and updates for long-term maintainability
and scalability. This makes it suitable for evaluating the OntoRipple tool,
since it uses different semantic artifacts and it models a different domain. In
this section a step by step propagation of a change will be displayed.

The data involved in this section are available herd’} the change data has been
manually crafted from the Github commits from the emolex repository. The
ontology, shapes, and mappings have been obtained from their corresponding
repositories. The code in Listing [2| represents the added code as seen in
the GitHub commits from the ontology. The code in Listing |3| models that
same change using OCH. The change is the addition of the OWL Class
emolex:BahaviouralMeasures to the ontology.

@prefix emolex: <https://w3id.org/def/emolex#> .
emolex:BehavioralMeasures rdf:type owl:Class .

Listing 2: Added Class in Emolex

OntoRipple iterates over the changes provided by the changelog and pro-
cesses them individually. First, the appropriate python function is selected
by the SPARQL query from Listing [4] for each specific change. Then, for that

3https://github.com/citiususc/emolex/
‘https://github.com/citiususc/semantic-emofinder
Shttps://github.com/oeg-upm/OntoRipple/tree/main/examples/emolex
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@prefix emolex_changes: <https://w3id.org/def/emolex-changes> .
@prefix och: <https://w3id.org/def/och#> .
emolex_changes:ac2 rdf:type och:AddClass;

och:addedClass emolex:BehavioralMeasures .

Listing 3: Added Class OCH compliant

PREFIX och: <http://w3id.org/def/och#>
SELECT DISTINCT ?change WHERE {
?change rdf:type och:AddClass .

¥

Listing 4: Change Select Query

change, the associated RDF terms are selected in Listings [3], specifically the
class that has been added.

In the case of RML mappings, it performs the following set of steps: first,
it checks whether there is already an rml:subject that points to that class
in Listing [0} If there is one, then no new mappings are added; if there are
none, then a template rml:TriplesMap will be added, as seen in Listing [7]

PREFIX och: <http://w3id.org/def/och#>
SELECT DISTINCT 7class WHERE {
<https://w3id.org/def/emolex-changesac2> och:addedClass 7class .

Listing 5: Added Class Query

PREFIX rml: <http://semweb.mmlab.be/ns/rml#>
PREFIX emolex: <https://w3id.org/def/emolex#>
ASK {
?triples_map rdf:type rml:TriplesMap .
7triples_map rml:subjectMap 7subject
?subject rml:class emolex:BehavioralMeasures

Listing 6: Check SubjectMap Query

In the case of SHACL shapes, it inserts a sh:NodeShape that targets the class
to which it is being added. The corresponding property shapes are added
when the property changes have taken place. The query is in Listing
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PREFIX rml: <http://semweb.mmlab.be/ns/rml#>
INSERT DATA {
ex:BehavioralMeasures_TM a rml:TriplesMap ;
rml:logicalSource [
rml:source [ "XXX" ]
rml :referenceFormulation "XXX" ;
15
rml:subjectMap [
rml:template "XXX" ;
rml:class emolex:BehavioralMeasures

Listing 7: Insert TriplesMap Query

PREFIX sh: <http://www.w3.org/ns/shacl#>’
INSERT DATA {
ex:BehavioralMeasuresShape a sh:NodeShape ;
sh:targetClass emolex:BehavioralMeasures .

Listing 8: Insert NodeShape Query

3.2. Full Change Log Fxecution Example

The EU Public Procurement Data Space (PPDS) [10] aims to provide a se-
mantic layer of public and private procurement data across Europe, allowing
among others, the calculation of a set of standard performance indicators
for each EU member state following a systematic approach. Technically,
PPDS aims to construct a decentralised KG, by declaratively mapping any
procurement data from each member state to the e-Procurement Ontology
(ePO)fl However, the ontology’s development remains ongoing, resulting in
continuous updates with the integration of new features and knowledge. The
ontology code is publicly available in a GitHub repository[’| and changes be-
tween consecutive versions are documented in the form of HTML filel Each
time a new version of ePO is released, PPDS knowledge graph engineers pro-
cess the release notes and manually accommodate the associated mappings,
and SHACL shapes to produce and validate the desired RDF data.

Shttps://docs.ted.europa.eu/EP0/latest/
"https://github.com/0P-TED/eP0
8https://docs.ted.europa.eu/EP0/latest/release-notes
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Table 3: Change Description form 3.0.0-3.0.1 ePO

Operation type Count
AddDomain 49
AddObjectProperty 34
AddRangeObjectProperty 34
RemoveDomain 34
RemoveObjectProperty 26
RemoveRangeObjectProperty 26
AddDataProperty 15
RemoveDataProperty 8
AddClass 3
AddSubClass 3
Total 232

For this usage example in the PPDS context, the changelog between the
3.0.0 and 3.0.1 versiond”] will be used. Since the release notes are in HTML
format, a custom script, and RML mappings have been used for generating
the change description in RDFH. The change description in RDF can also
be generated using the Widoco extension [28], or manually crafted.

Table [3] shows the data regarding the change operations that can be found
in the ePO changelog between these ontology versions. Then we execute
the OntoRipple tool providing as input the ontology, outdated mappings,
outdated shapes, the current ontology, and a path for where the updated
mappings, and shapes will be generated. The data used can be found in the
project repositoryEl

Table [4af displays the changes that have been produced by the change oper-
ation from the 3.0.0-3.0.1 changelog |3 in the RML mappings. The AddClass
operations have resulted in new TriplesMap, with new LogicalSources and
SubjectMaps. One of these change operations has not taken place because
that class was already in the RML mappings. The addition/removal of a
property results in the addition/removal of a PredicateObjectMap if it is not
already within mappings. Also, many of the ontology modifications have
been represented within the HTML changes as Remove and Add changes;

9https://docs.ted.europa.eu/EP0/3.0.1/release-notes.html
Ohttps://github.com/oeg-upm/OntoRipple/tree/main/examples/ppds/input_da
ta/epo-changes_data
“https://github.com/oeg-upm/OntoRipple/tree/main/examples/ppds/3.0.0-3
.0.1_example
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Table 4: Differences in RML Mappings and SHACL Shapes between the ePO 3.0.0 and
3.0.1 versions. In RML, TM* has one SubjectMap and one LogicalSource also associated.

Component Count Component Count
TM* — Added 2 NS — Added 3
TM* — Replaced/Modified 3 NS — Replaced/Modified 0
TM* — Removed 0 NS — Removed 0
POMs — Added 15 PS — Added 13
POMs — Replaced/Modified 34  PS — Replaced/Modified 168
POMs — Removed 0 PS — Removed 0
(a) RML Mappings (TM = TriplesMap, POMs = (b) SHACL Shapes (NS = NodeShape, PS = Prop-
PredicateObjectMaps). ertyShape)

that is why the number of POM removed is 0 and the modified ones is 34 in
Table [4a] despite the high number of removals in Table

Table [4b|shows the changes that have been produced by the change operation
from the 3.0.0-3.0.1 changelog (Table[3]) in the SHACL shapes. The AddClass
operations have resulted in the new NodeShapes. The addition/removal of
a property results in the addition/removal of a PropertyShape if it is not
already within mappings. The ontology modifications have been represented
within the HTML changes as Remove and Add changes; that is why the
number of modified/replaced Property shapes is 168 whereas the removed
properties are 0.

4. Impact

The OntoRipple software tool successfully manages to apply the automati-
cally generated OWL ontology changes to the RML mappings and SHACL
shapes, reducing the manual effort of the knowledge graph engineers. Cur-
rently, this is the only open source approach that provides this functionality,
and has the potential to save time, money, and other resources in any KG
driven project. This tool has successfully answered the following research
questions:

e RQ1: How much of the ontology change propagation to semantic arti-
facts process can be automated for RML mappings and SHACL shapes?

Other contributions we have made in this line of research are the following:
The OWL Change Ontology (OCH) [18] was created to ease representing
change operations in RDF, and thus allows for better processing of changes
for this tool. The Widoco [29] tool for automatic generation of ontology doc-
umentation was extended [2§] to automatically extract the OCH-compliant
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changes between two ontology versions. LOT4KG [30], 3], an extension of
the LOT methodology [20] was developed to address the gap in methodolo-
gies that integrate the ontology lifecycle and KG lifecycle; this tool covers
one of the most important aspects of the methodology, the change detection
and impact analysis of the ontology changes.

OntoRipple opens new avenues for expansion that result in new research
questions.

e There have been other ontology change representation proposals for
complex changes [16] made of the a set of simple changes. Complex
operations are made up of simpler ones, but they can provide more
information regarding the motivation of certain changes, and how those
can be propagated remains unclear. RQ2: What is the impact that the
representation of complex changes has on the propagation of changes?

e SHACL and RML are standards for the construction and the validation
of ontologies, used in many projects, there are many more semantic ar-
tifacts, used for different tasks, such as the KG exploitation, that face
the same problems during the KG lifecycle and the tool can be ex-
tended to include those RQ3: Can the modeled change propagation
mechanisms be generalized and extended to other semantic artifacts,
enabling consistent evolution and synchronization across the entire se-
mantic ecosystem?

e The tool reduces the manual labor required to update the RML map-
pings to regenerate the graph, however the entire graph has to be re-
generated and re-uploaded. A way to apply these changes in patches
could have a positive effect on performance and reduce computational
costs. RQ4: How does this approach affect performance? Can these
changes be applied as patches to avoid regenerating the entire graph,
or validate all the rules?

e Just as the ontology changes over time the data sources that make up
the knowledge graph undergo many changes. Thus, the RML map-
pings have to be modified to correctly regenerate the graph, and the
SHACL shapes have to be modified so that it validates the updated
data sources. RQ5: How can the changes in data sources be concep-
tualized and propagated to RML and SHACL?

5. Conclusions

In this paper, we have presented a software tool that allows for the integration
of ontology evolution within the KG construction and validation lifecycle.
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The tool, taking the ontology change description, updates the corresponding
RML mappings and SHACL shapes to accommodate the changes that have
taken place between ontology versions. The ontology change description in
RDF can be automatically generated between ontology versions [28]. On-
toRipple provides support for 25 distinct change operations, covering most
of the OWL expressivity. We have also tested the tool on a use case for the
eProcurement Ontology, where the changes between ontology versions docu-
mented as HTML have been successfully propagated over the project’s RML
mappings and SHACL shapes. The main limitation of OntoRipple is that full
automation has not been achieved. Since the RML mappings are between
the ontology and the input data sources, there are parts of the mappings
that are dependent on the data sources. The tool focuses on the ontology
changes and does not account for the input data changes that also affect the
mappings [32].

For future work, we will perform a performance study to analyse the impact
the tool can have on the regeneration and validation of the graph, with
a focus on the execution time and the memory consumption when dealing
with large ontologies or complex sets of changes. The OWL Change Ontology
is currently being updated to include complex changes, Ontoripple will be
updated to propagate said changes. A Github Action that generates the RDF
Change Data whenever a new commit is made will be created. Constructing
the updated mappings in the form of patches that can be applied individually
instead of regenerating the whole graph is an avenue for improving the KG
maintenance as well. We will study how the inverse propagation process,
where we propagate changes from the input data sources to the ontology
and semantic artifacts, can be performed. The inclusion of other semantic
artefacts represented by different language is also being considered.
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