April 2025

Declarative Generation of RDF
Collections & Containers from
Heterogeneous Data

Christophe DEBRUYNE ?, Souail JAADARI? David CHAVES-FRAGA ¢

d Montefiore Institute, University of Liege, Belgium
b Intelligent Systems Group, Universidade de Santiago de Compostela, Spain
¢ CiTIUS, Universidade de Santiago de Compostela, Spain

Abstract. RDF Collections and Containers are key constructs for representing or-
dered and grouped data in knowledge graphs. However, generating them from het-
erogeneous data sources remains challenging due to limited support in existing
declarative mapping tools. While the RML-CC module formally defines these con-
structs within the modular RML ontology, this paper focuses on their practical sup-
port. We extended Morph-KGC to support RML-CC, enabling the declarative gen-
eration of structured RDF constructs, and compared this extension with BURP, the
first RML engine supporting RML-CC. On top of that, we introduce YARRRML-
CC, an extension of the YARRRML syntax to represent RML-CC mappings, and
update the YARRRML-compliant engine Yatter for translating mappings from
YARRRML-CC to RML-CC to support interoperability across toolchains. The
standard W3C-CG-KGC suite of RML-CC test cases is also used to validate the
correctness and coverage of our proposals. Scaling these test cases, we also conduct
an experimental evaluation to assess the performance of the proposed tools across
a wide range of scenarios. These contributions make it possible to integrate RDF
Collections and Containers into real-world knowledge graph generation workflows
with greater expressiveness and consistency.

Keywords. RML, KG Construction, Collections and Containers

1. Introduction

RDF (Resource Description Framework) offers native constructs namely, Collections
and Containers, to represent ordered and grouped data'. These structures are crucial in
many knowledge graph scenarios, where the preservation of order or grouping semantics
is essential (e.g., lists of authors, sequences of events, or sets of related measurements).
Despite their relevance, current RDF generation practices rarely include Collections and
Containers due to the limited support in existing declarative mapping languages [20,9]
and engines.

While declarative mapping languages such as R2ZRML [7] and RML [18] have
become standard approaches for generating RDF from structured and semi-structured

"https://www.w3.org/TR/rdf-schema/#ch_collectionvocab

https://www.w3.org/TR/rdf-schema/#ch_collectionvocab

May 2025

data, they lack native support for RDF Collection and Container constructs. As a re-
sult, practitioners are often forced to resort to ad-hoc scripting or post-processing steps,
which reduces the transparency, maintainability, and interoperability of the data genera-
tion process. Moreover, mainstream mapping engines, including FlexRML [11], SDM-
RDFizer [14], and Morph-KGC [1], have traditionally focused on “flat” graph genera-
tion, with no built-in mechanisms to capture order or grouping semantics beyond basic
subject-predicate-object relationships.

This paper addresses this gap by presenting a complete ecosystem for the declar-
ative generation of RDF Collections and Containers from heterogeneous data sources.
We extended? Morph-KGC [1] to support the RML-CC module [18]. Our extension
will be compared against BURP [24], which was the only implementation supporting
RML-CC. We also extend the human-friendly serialization, YARRRML [13], to include
YARRRML-CC, enriching it with constructs for defining RDF lists, bags, sequences,
and alternatives. These extensions allow users to define collection structures explicitly
and portably across mapping engines. In addition, we also extend Yatter [17], a translator
that converts YARRRML into easy-to-read (R2)RML for supporting the conversion of
Collections and Containers, facilitating interoperability and tooling integration.

To validate the proposed approach, we rely on the test-cases’ defined by the W3C
Knowledge Graph Construction Community Group* for Collections and Containers. We
also adapt them into YARRRML-CC for the evaluation of Yatter’s correctness and fi-
delity. Furthermore, we scale selected test cases to assess the performance impact of
generating structured RDF constructs across multiple engines. This thorough validation
demonstrates both the functional soundness and the scalability of our ecosystem, estab-
lishing a foundation for robust and declarative handling of RDF Collections and Con-
tainers in knowledge graph construction workflows.

The paper is structured as follows: Section 2 introduces the background concepts
relevant to our work. Section 3 outlines the main contributions of the paper. Section 4
details the validation process and the data generation methodology. Section 5 discusses
related work, and Section 6 concludes the paper and outlines directions for future re-
search.

2. Background

In this section, we introduce the RML-CC module, which builds upon the RML map-
ping language [18] to enable the generation of RDF collections and containers. We also
present the two KG Construction engines: Morph-KGC [1], a heuristic-based and effi-
cient RML-compliant system, and BURP [24], a reference implementation for the new
RML specification [18] which has been written from scratch to have no influence from
prior implementations of RML. These tools provide complementary approaches to pro-
cessing RML-CC mappings and allow us to compare their behavior under varying data
configurations and mapping constructs.

’https://github.com/chrdebru/morph-kgc
3http://w3id.org/rml/cc/test-cases
“https://www.w3.org/community/kg-construct/

https://github.com/chrdebru/morph-kgc
http://w3id.org/rml/cc/test-cases
https://www.w3.org/community/kg-construct/

May 2025

rml:-TermMap

rml:gather
[rdf:List of TermMap]

rml: http://w3id.org/rml/
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

rml:GatherMap Legend

rmi:strateg

rml:allowEmptyListAndContainer: xsd:boolean Y1 Class ‘ RML Core ‘

[
rmi:gatherAs rml:Strategy Data Property: datatype
rdf:type | Individual | ‘ RML Containers

rdf:Seq rdf:Alt rml:append

A4 \ 4 H —subClassOf—> —Object Property—»

‘ rdf:Bag ‘ ‘ rdf:List ‘ ‘ rml:cartesianProduct ‘ ----rdf:type---->

Figure 1. The RML-CC module (represented using the Chowlk Visual Notation [6]). The RML-CC resources
are highlighted in purple, while the rest of the represented ontology belongs to the RML-Core module.

2.1. RML Collections and Containers

RML-CC is the RML module that supports generating RDF collections and containers.
This module drew inspiration from two (R2)RML-like predecessors: (i) an extension of
R2RML-F for RDFS Collections and Containers [8], and (i1) XR2RML [19], which is an-
other extension of RZRML that supported non-relational data. The first proposed an ap-
proach that supported collecting terms across iterations and of different term types. The
latter provided more control and allowed the generation of Collections and Containers
from various sources.

Both approaches were consolidated into RML-CC, and further functionality was
provided for generating Collections and Containers from a Subject Map, empty Collec-
tions and Containers, etc., formulated as a set of requirements in [18]:

. Collect values from one or more (multi-valued) Term Maps.

. Control the generation of empty collections and containers.

. Generate nested collections and containers.

. Group different term types.

. Generate collections or containers as a subject.

. Assign an IRI or blank node identifier to a collection or container.

(o I O I R

An overview of RML-CC is presented in Figure 1, along with a representative ex-
ample in Listing 1. The module introduces one main class, rml: GatherMap, which de-
fines three properties (rml:gather, rml:gatherAs, and rml:strategy) used to ex-
press the requirements described above. RML-CC proposes two strategies to process
gathering values from multiple multi-valued term-maps: rml : append, the default strat-
egy, and rml:cartesianProduct. While rml:append is arguably the most intuitive
approach, W3C Community Group proposed the use of strategies so that engines can
suggest and implement bespoke strategies, e.g., “append without duplicates”. Although
gathering terms across iterations is not explicitly stated as a requirement, it is implicitly
supported through the use of blank nodes or IRIs to represent collections or containers, in
combination with the rml : append strategy. When an RML engine constructs such struc-
tures, the terms yielded in each iteration are appended accordingly. For further details on
this module, we refer the reader to the seminal paper on RML [18].

May 2025

Listing 1: Example of RML-CC mapping document in Turtle syntax

@prefix rml: <http://w3id.org/rml/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix ex: <http://example.com/ns#>.

@base <http://example.com/>.

<#TM> a rml:TriplesMap;

rml:logicalSource [
rml:source [a rml:RelativePathSource ; rml:path "data.json"] ;
rml:referenceFormulation rml:JSONPath ;
rml:iterator "$.*"] ;

rml:subjectMap [rml:template "e/{$.id}" 1 ;

rml:predicateObjectMap [
rml:predicate ex:with ;
rml:objectMap [
rml:gather ([rml:reference "$.values.*"]); rml:gatherAs rdf:Bag]]

2.2. Morph-KGC and BURP

Morph-KGC [1] is an open-source (R2)RML engine used for constructing RDF Knowl-
edge Graphs from structured and semi-structured data. Morph-KGC is implemented in
Python and uses Pandas data frames for data manipulation and processing. It is designed
with a modular architecture to handle the different stages of knowledge graph construc-
tion. Morph-KGC’s mapping partitioner, for instance, analyses the mappings to identify
independent groups of rules that can be executed in isolation. This optimization reduces
memory consumption and allows for parallel processing. Pandas offers functionality that
affects efficiency, e.g., the efficient removal of duplicates. Its reliance on Pandas at times
comes at a cost. For instance, when a reference object map relies on multiple join condi-
tions, Morph-KGC performs less well when processing “’simple” joins, as Pandas relies
on a separate algorithm to perform that join [23].

BURP [24] is a Java-based application whose development has been closely tied to
the RML test cases”. It was used to test and validate the new RML specification and its
test cases [18], helping identify and address inconsistencies or issues within the spec-
ification. BURP is the W3C Community Group’s effort to develop an RML reference
implementation. Currently, BURP is the only RML engine fully supporting RML-CC.
By starting from scratch, it aimed to avoid biases in existing RML engines, which often
evolved from research projects with specific goals (i.e., for optimization and distributed
processing [14,1]). BURP uses simple data structures, storing all data in main memory.
This means it is not optimized for large datasets that might exceed available RAM. The
RDF generation algorithm is deliberately kept simple, similar to the RZRML reference
algorithm. No complex optimizations, mapping rewrites, parallelization, or distributed
computing techniques are applied. This simplicity makes it easier to implement the vari-
ous aspects of RML. Finally, BURP does not attempt to recover from or correct errors. If

Shttps://w3id.org/rml/portal

https://w3id.org/rml/portal

May 2025

an error occurs, it exits with a non-zero exit code, providing an error message to the user.
Unlike RML engines such as RMLMapper, it does not try to produce best-effort” partial
results. It suffices to look at distributed processing to motivate such an implementation
that runs in one thread (and thus machine); when mapping tasks are sent to different
cluster nodes, the results reported back may not necessarily be received in their natural
order. As such, the output is not guaranteed to be deterministic.°

3. Declarative generation of RDF Collections & Containers

RML-CC introduces explicit support for generating RDF Collections and Containers
from heterogeneous data sources. While these RDF structures are commonly used, most
existing mapping engines offer limited support. This section reviews how RML-CC is
implemented in two different RML engines. We present BURP, designed as the reference
implementation and the partial support available in Morph-KGC. We also describe the
extension of YARRRML to include RML-CC features in its syntax, and how Yatter (a
YARRRML-compliant engine) has been updated to translate between YARRRML-CC
and standard RML-CC mappings.

3.1. RML-CC in BURP

The implementation of BURP closely follows R2ZRML’s algorithm, which has been ex-
tended for RML. While we will not delve into the details of supporting other extensions,
such as RML-FNML and RML-STAR, the support for RML-CC arguably requires the
most changes to the original algorithm. The following description furthermore describes
how RML-CC was implemented in BURP.

It is important to note that a Gather Map generates graphs, not terms. Take, for ex-
ample, a Subject Map as sm. When sm is not a Gather Map, then all of its terms (be-
cause Term Maps may be multi-valued) are processed as usual. When a sm is a Gather
Map, however, the engine generates a set of graphs containing the collections and con-
tainers. Each “sub-graph” holds a reference to the term representing the collection or
container and the graph with all the triples pertaining only to that collection or container.
For each sub-graph, the node is added to the list of subjects, and the graphs are added
to the datasets using the list of named graphs generated by sm’s Graph Map. Gather
Maps can be nested. When dealing with a Gather Map, we invoke the function “gen-
erate[GatherMap]Graphs” instead of “generateTerms,” which is responsible for passing
the iteration on its Term Maps (“regular” or themselves Gather Maps). The same logic is
applied to the generation of collections and containers in Object Maps.

Containers have a type (Bag, Seq, or Alt), so empty containers are easy to manage
as their IRIs or blank node identifiers are used within at least one triple. This is not the
case for empty lists. Empty lists, which may in the end not be empty, cannot be identified
as rdf :nil. We internally use an artificial list “type” which is removed during the RDF
generation process.

In Apache Spark, for instance, for the reduce function to work correctly and consistently in a distributed
environment, the function provided to reduce must be both associative and commutative. Spark cannot guar-
antee a deterministic or correct final result if it is not.

May 2025

Table 1. Relationship betweeen RML-CC vocabulary to YARRRML-CC representations

RML-CC YARRRML-CC
rml:gather gather
rml:gatherAs gatherAs
rml:strategy strategy
rml:allowEmptyListAndContainer empty
rml:cartesianProduct cartesianProduct
rml:append append

BURP is implemented using Apache Jena. In Apache Jena, the members of a con-
tainer are linked via rdf : _x properties, which thus requires some complex and arguably
inefficient bookkeeping to connect elements of these containers generated via different
gather maps and/or generated in various iterations.

3.2. RML-CC in Morph-KGC

To support the RML-CC specification, Morph-KGC incorporates specific logic within its
materialization layer to handle rdf :List, rdf :Bag, rdf:Seq, and rdf:Alt. This in-
cludes the interpretation of the rml : gather, rml:gatherAs, and rml:strategy pred-
icates, which control the aggregation, naming, and ordering of collection members. At
this moment, our implementation only supports rml : append, which we deem the most
fitting approach to support. Dedicated helper functions were introduced to construct RDF
triples for both anonymous and named collections and containers, with special attention
to correctly managing index assignments in sequences. These enhancements ensure syn-
tactic and semantic compliance with the RML-CC module, despite the limitations of the
broader execution strategy.

However, Morph-KGC provides partial support for RML-CC, since its internal ar-
chitecture introduces notable limitations. The engine heavily relies on pandas for data
processing, which is optimized for flat, tabular data structures. This makes it difficult
to handle nested or hierarchical constructs such as the ones used for generating RDF
Collections and Containers. In particular, features such as processing multivalued ob-
jects or removing duplicates within the same array require collecting and structuring val-
ues across multiple rows, which conflicts with the row-wise evaluation model used in
Morph-KGC. As a result, while basic functionality is in place, the support remains con-
strained and introduces significant overhead and complexity when processing mappings
involving these advanced features.

The execution planning strategy employed by Morph-KGC [1] is also not very well-
suited for supporting the efficient execution of RML-CC mapping. This planning mech-
anism operates at the level of individual mappings and relies on simplified representa-
tions of Predicate-Object Maps (POMs), which do not capture the structural complex-
ity introduced by RML-CC constructs. Hence, Morph-KGC optimizations need to be
adapted in order to provide better support of complex RML-CC structures and ensure
high performance and scalability when processing mappings that group representations.

3.3. YARRRML-CC and Yatter

To facilitate the development of the mapping rules for generating RDF collections &
containers, we have also extended YARRRML [13]. YARRRML is a human-friendly se-

May 2025

prefixes: @prefix rml: <http://w3id.org/rml/>.
ex: http://example.com/ns# @prefix ex: <http://example.com/ns#>.
base: http://example.com/

mappings:
map1:
sources:
access: person.json
formulation: jsonpath
iterator: "$.x"
s: e/$($.1id)
po:
- p: ex:with
o:
value: c/$($.id)
gather:
- gather: $($.1.%)
gatherAs: bag
- gather: $($.2.%)
gatherAs: bag
gatherAs: list

<map> a rr:TriplesMap;
rml:logicalSource [
rml:source "data.json";
rml :referenceFormulation rml:JSONPath;
rml:iterator "$.x";];
rml:subjectMap [
rml:template "e/{$.id}";];
rml:predicateObjectMap [
rml:predicate ex:with;
rml:objectMap [
rml:template "c/{$.id}";
rml:gather ([
rml:gather ([rml:reference "$.1.%";]);
rml:gatherAs rdf:Bag; 1 [
rml:gather ([rml:reference "$.2.%";]);
rml:gatherAs rdf:Bag; 1);
rml:gatherAs rdf:List; J;
i

Listing 2: Equivalent mappings in YARRRML-CC (left) and its corresponding transla-
tion in RML-CC (right)

rialization of RML [17] based on the YAML language. Following the same approach as
in the previous extension of the RML-star module (YARRRML-star [17]), we define a
set of correspondences between the RML-CC vocabulary and its YARRRML-CC repre-
sentation. These correspondences are summarized in Table 1. In addition, the values of
the subject and object keys must be extended to support all possible combinations
introduced by the RML-CC module. An example is provided in Listing 2, illustrating
the added complexity introduced by RML-CC in YARRRML-CC when expressing the
generation of recursively nested structures.

Support for this extension has been integrated into Yatter [17], a YARRRML-
compliant translator, starting from version 2.07. The tool has been updated to parse and
validate YARRRML-CC constructs, including support for nested structures and the as-
sociated keys defined in Table 1. In addition, Yatter implements now a normalization
process over YARRRML mappings, which flattens syntactic sugar and expands short-
hand constructs into their fully qualified equivalents. This normalization ensures a con-
sistent and unambiguous transformation into RML. This feature is particularly important,
as Yatter produces the resulting RML mapping in Turtle syntax. This serialization uses
predicate object lists within blank node properties®, as recommended by the [R2]JRML
specifications. Specifically designed to be human-readable, this output facilitates debug-
ging and inspection by knowledge engineers, providing a clear view of how high-level
YARRRML-CC constructs are resolved into RML-level mappings.

"https://doi.org/10.5281/zenodo . 14627842
Shttps://wuw.w3.org/TR/turtle/#unlabeled-bnodes

https://doi.org/10.5281/zenodo.14627842
https://www.w3.org/TR/turtle/#unlabeled-bnodes

May 2025
4. Validation

We will validate our implementation of RML-CC in two ways. First, we will assess
our implementation’s compliance with RML-CC via the test cases. This will give us an
indication of the specification coverage. Next, we will benchmark our implementation
against a naive implementation of RML-CC.

4.1. RML-CC Test Cases

Since BURP was developed from scratch with the goal of serving as a reference imple-
mentation for RML, it already supports all the test cases defined by the RML-CC mod-
ule. In contrast, Morph-KGC passes 19 out of the 34 test cases (56%). While this may
seem underwhelming, Morph-KGC does support most of the requirements put forward
by RML-CC. As we will discuss in this section, many of the problems are related to
Morph-KGC’s choice for a Pandas data frame as an internal data structure, and that any
overhaul of the implementation may come at the cost of its strengths.

In 0003-EL-BN, the test case uses an rml:template to generate blank node iden-
tifiers. While generating blank nodes with “regular term maps” is possible, our imple-
mentation has an issue where the rml:termType directive is ignored. This is likely a
bug.

RMLTC-CC-0004-SMX test cases are concerned with generating collections and
containers from a subject map. The test cases work for collections (RMLTC-CC-0004-
SM1) and containers (RMLTC-CC-0004-SM4) where there is at least one rml:class’
attached to the subject map or at least one predicate-object map attached to the triples
map. Those are not necessary when we merely want to generate containers and con-
tainers. The other test covers those cases, and the reason that RMLTC-CC-0004-SM2,
RMLTC-CC-0004-SM3, and RMLTC-CC-0004-SMS5 fail is that Morph-KGC requires
all triple maps to have at least one predicate-object map.

RMLTC-CC-0005-CarX test cases fail as we have decided not to implement the
Cartesian Product strategy. This strategy would have, moreover, required major refactor-
ing. Similarly, Morph-KGC did not implement the gathering of terms across iterations.
By relying on Pandas data frames, it is challenging to aggregate terms (or collections and
containers of terms) across records, which may be distributed. Solutions to this problem
may also affect the performance of Morph-KGC as it limits its capabilities for distributed
KG generation. The same arguments hold for collecting terms via gather maps (test cases
RMLTC-CC-0008-ROMX) and nested gather maps (RMLTC-CC-0007-Nes). The latter
is interesting as Morph-KGC adds a column with a lambda for each term map. When
dealing with nested gather maps, the gather maps need to be traversed via deep recursion,
and one needs to create such columns for each ”leaf” and each non-leaf,” where the lat-
ter is responsible for the combinations across columns. This was impractical because of
the Pandas data frame used as the primary data structure, and additional bookkeeping”
of column execution order would have been required.

RMLTC-CC-0009-DUP-X test cases aim to assess whether RML engines do not
preprocess the documents. Morph-KGC removes duplicate values (e.g., ’a”: [1, 2, 3, 2,

°It is important to note that rm1:class is syntactic sugar for predicate-object maps with two constants:
rdf : type for the predicate and the class for the object. Morph-KGC rewrites rml : class into predicate-object
maps.

May 2025

pauoddns 10N X (are1dwa) © aaey dew soyjes pue dew ydeiS yroq) sdew toyes pue sdew ydeas Suruiquio) QISIT-0100

payoddns JoN X (3ou seop dew Joyjes pue 9jejdwa) e sey dew ydei3) sdew 1oypes pue sdew ydei3 Suruiquio) ®ISTT-0100
Suuoyoeyar dosp saxmbaoy X ISTT AQY U Ul sanfea ajedridnp royen 1SIT-dNA-6000
Suniojoejar dosp sanmbay X Seg 4 ue ul sonfea edrdnp soyren | Seq-dNd-6000
Sunojoejar doop sannboy X uonipuod utof Jnejop Yim dew-303(qo I0UI9JI BIA SIUAWI[H qQINOY-8000
Sunojoejar doop saxmnboy X *dew-109[qo 90UAIVJAI BIA SJUSWI[H BINOY-8000
Suwiojoryar doop soxmboy X sdew 1oyyes parsoN SAN-L000
Sunojoejar doop saxmboy X ‘SUONBINL SSOIOB SAN[BA JAYIeD) TLI-9000
Sun0joejar doop sannboy X ‘SUOTIRI)I SSOIOE SANJRA IdyleD) I.LI-9000
*(uone3a133e Ou ‘9sed Askq) SUOTIBII)I SSOIOE SAN[eA IIeD) 0.LI-9000

payoddns JoN X ‘dewr Joyje3 e jo sdew uwe) oydnnw woiy sanjea jo yonpoid uerserre) 71®D-S000

pauoddns 10N X ‘dew 1oype3 e Jo sdew we) [dnnw woiy sanfea jo 1onpoid uersorre) 118D-S000

sdew wire) oydnnuw jo senjea puaddy 7ddv-5000

sdew uurd) oydnnuw jo senyea puaddy 1ddv-5000

Sunioyorja1 doap saxmbay X (3eq) dew 10a[gns ur depyoyIen SINS-7000
(8eq) dew 1o0lqns ur depyroyren YINS-+000

Suwiojoejar doop saxmboy X (s1y) dewr 102(qns ur dejaroyren S€INS-+000
Sunooeyor deop sexmbay X (as11) dew 103[qns ur dejaproyren TINS-+000
(s1p) dew jo0[qns ur depyIoyren TINS-+000

11 parerauas jou are sysiy Aidwyg qQTAN-£000

pajeIauasg jou are sysip Aydwrg TAN-£000

pajerouas jou are sSeq Aydwyg dAN-£000

'STI Aq paynuapr sisi] Aidwd Jo uonerouasd Yy Mo[[y | paweN-Td-£000

3nq © Aoy X 'SIOYNUAPI dpou Yuer[q Aq paynuapr sisi| A1dwd Jo uonerauas ay) Mo[[y Ng-T19-€000

s1s1] A1dwd Jo uonesauas ay) Moq[y TH-€000

sSeq A1dwo Jo uoneIouas Ayl MO[[Y d9-€000

199[qO ue SE JSTT:JpI POWRU B 9JRIUID) ISI'T-2000

109[qo ue se Seq:Jpl poweU € 9)eIoudn) 3eg-7000

103[qo ue se bag:jp1 € 9eIoUD) bag-1000

109[qo ue s ISIT:JpI B AJeIoudn) ISIT-1000

192[qo ue se Seq:Jp1 € AqeIdUID Seg-1000

100[qo Ue Se I[:JPI € 9JeIouan) NV-1000

ywpwwo) | I9Y-ydioW | JANd 1S9L | AIDD-DLTNY

May 2025

1] as duplicate triples generated via “traditional” mappings are ignored. We thus notice
that Morph-KGC removes duplicate values before passing them on to the expression
maps.

Finally, combining gather maps with graph maps is impossible, as that would re-
quire additional “bookkeeping” that would not only hamper Morph-KGC’s distributed
computing capabilities but also require a major refactoring of the code base.

Summary. Looking at the requirements put forward by RML-CC, we can conclude the
following:

1. Morph-KGC can collect values from one or more (multi-valued) Term Maps, but
only from within the same iteration. The collection of terms across iterations re-
quires major refactoring of Morph-KGC.

2. Morph-KGC can control the generation of empty collections and containers.

3. Morph-KGC cannot generate nested collections and containers. This would re-
quire a significant refactoring of Morph-KGC.

4. Morph-KGC can group different term types.

5. Morph-KGC can generate collections or containers as a subject. This currently re-
quires additional POMs, but that is because Morph-KGC requires at least one POM
to start the KGC generation process. This should not require a major refactoring
of Morph-KGC.

6. Morph-KGC can assign an IRI to a collection or container, but there are problems
when assigning blank node identifiers. This would require a significant refactoring
of Morph-KGC.

4.2. YARRRML-CC Test Cases

We rely on the official RML-CC test suite proposed by the W3C Knowledge Graph Con-
struction Community Group'? to define a corresponding set of test cases for YARRRML-
CC. These test cases aim to validate the syntactic expressiveness and translation seman-
tics of YARRRML-CC, rather than the correctness of data generation itself. Each original
RML-CC mapping was manually translated into one or several equivalent YARRRML-
CC, depending on shortcuts and syntactic sugar approaches. The resulting test suite
comprises 22 test cases, covering all vocabulary elements introduced by the RML-CC
module, including recursive gather constructs, different container types via gatherAs,
and join strategies such as rml:append. All test cases are publicly available and serve
as a reference for evaluating conformance of YARRRML-CC-compliant tools!!. Yatter
passes all test cases successfully.

4.3. Performance Evaluation

We also aim to evaluate the performance of both engines, BURP and Morph-KGC, to un-
derstand how different parameters impact execution time [23,4]. This evaluation is based
on the test cases defined above, scaling the input data sources along various parameters.
All resources used in this experimental evaluation are openly available!?.

Onttp://w3id.org/rml/cc/test-cases
https://github.com/citiususc/yatter/tree/main/test/rml-cc
2https://github.com/citiususc/rml-cc-eval

http://w3id.org/rml/cc/test-cases
https://github.com/citiususc/yatter/tree/main/test/rml-cc
https://github.com/citiususc/rml-cc-eval

May 2025

Table 2. Evaluation dataset configurations by data type

Data Type ‘ Format ‘ Parameters Values Used
num_objects 10K; 100K; 1M; 10M
Simple JSON num_lists Fixed at 1
values_per_object Fixed at 10
num_objects Fixed at 2
Multivalued JSON num_lists Fixed at 2
values_per_list 10K; 100K; 1M; 10M
Join oSV num_rows Fixed at 10,000
join_percentage 25%; 50%;, 75%; 100%
num_objects Fixed at 1
Duplicates JSON values_per_object Fixed at 10,000
duplicate_percentage | 25%; 50%; 75%; 100%

Synthetic Data Generation. To evaluate RML engines under different data conditions,
we implemented a flexible data generator that produces synthetic JSON and CSV files
based on configurable parameters. The goal is to create datasets that reflect common
structural patterns while allowing control over volume, value multiplicity, and redun-
dancy. We defined four types of datasets: simple, multivalued, join, and duplicates. Table
2 summarizes the configuration of each dataset type:

» Simple datasets are composed of flat JSON objects with fixed-size lists of values.
The number of records scales is configurable, and in this case, we use from 10K
up to 10 million, allowing us to test performance under increasing volume.

* Multivalued datasets contain two lists per object (e.g., vl and v2). The total num-
ber of values per list is scaled in each experiment. This dataset helps assess how
engines handle multivalued fields or repeated properties.

* Join datasets are constructed from a single CSV file that can be self-joined. The
percentage of matching keys is configurable (in our experimentation, we use from
25% to 100%), making it possible to measure the cost of join operations.

* Duplicate datasets consist of a single object containing a large list, with a config-
urable percentage of duplicate values. This setup is useful for testing an engine’s
robustness to redundancy and how it manages repeated entries.

Engines and Metrics. We use the extension implemented in Morph-KGC'? and BURP
v0.1.2'*. For each experiment, we measure the execution time, running each configura-
tion three times and reporting the average. The timeout is set at 60 minutes. All experi-
ments are running on an AMD EPYC 9554 Processor with 64 cores and 755 GB RAM.

Results. We show the obtained results in Figure 2 for the simple dataset and in Fig-
ure 3 for multi-values, joins and duplicates. Figure 2 summarizes the average execution
times obtained for each engine across all the simple dataset configurations. To provide a
more concise and interpretable visualization, we aggregated results by grouping together
mappings that share the same base identifier but differ only in their collection structure

Bhttps://github.com/chrdebru/morph-kgc
“https://github. com/kg- construct/BURP

https://github.com/chrdebru/morph-kgc
https://github.com/kg-construct/BURP

May 2025

0004

apping oppin
mmm BURP = MORPH-KGC (2 Timeout threshold (3600s)

Figure 2. Execution time of simple dataset scaled in different sizes (10K, 100K, 1M y 10M).

(e.g., 0001-Alt, 0001-Bag, 0001-List, and 0001-Seq are treated as a single group 0001).
For each dataset size (10K, 100K, 1M, 10M), we computed the average execution time
across all mappings in the group. This allows us to evaluate how each engine scales with
increasing data volumes, independent of minor structural variations. As shown in the
figure, BURP surprisingly demonstrates consistent and efficient performance across all
dataset sizes up to 1 million objects. For the 10K and 100K object scenarios, execution
times range between 2 and 10 seconds. At 1M objects, most mappings are processed
in under 90 seconds, indicating acceptable scalability. However, all 10M experiments
timed out, marking the current upper limit of BURP for this data type. On the other
hand, Morph-KGC shows significant limitations. Most experiments either reach a time-
out (exceeding the 60-minute threshold) or are simply not supported. While it manages
to complete a few 10K-object cases, the execution times are disproportionately high for
instance, 160 seconds in 0001 and nearly 200 seconds in 0004, making it unsuitable for
larger datasets. All 100K, 1M and 10M runs timed out.

Figure 3 presents the execution time evaluation of the BURP engine across the Mul-
tivalued, Join, and Duplicates dataset categories. The results focus solely on BURP, as
the majority of these experiments are not yet supported in the current implementation of
Morph-KGC for RML-CC. Unlike the simple datasets, the Multivalued experiments do
not scale in BURP. All attempts to execute configurations beyond 10K values (i.e., 100K,
1M, and 10M) resulted in timeouts under BURP, indicating scalability limitations in han-
dling multiple nested lists. For this reason, only the 10K configuration is shown in Figure
3. In the Duplicates datasets, the results show that duplication has negligible impact on
BURP’s execution time. This is because BURP does not include an internal deduplica-
tion mechanism (like SDM-RDFizer [14] or Morph-KGC [1]) that scales with duplica-
tion rate, processing the input uniformly regardless of redundancy. In the Join datasets,
we analyze mappings with and without join conditions (e.g., ROMa vs ROMb). The exe-
cution times clearly indicate that join conditions significantly affect performance. ROMa
mappings, which include one join condition, consistently require more time to process

May 2025

Execution Time of Multivalued in BURP

Jllllll

05-Appl 05-App2 05-Carl 05-Car2 06-IT2 06-IT5 07-NES

2

Time (s, log scale)
)

g

Execution Time of Duplicates in BURP

10?

. J . - . .
100 - - L

09-DUP-Bag (25%) 09-DUP-List (25%) 09-DUP-Bag (50%) ~ 09-DUP-List (50%) 09-DUP-Bag (75%) 09-DUP-List (75%) 09-DUP-Bag (100%) 09-DUP-List (100%)

Time (s, log scale)

Execution Time of Join in BURP

10°
.

08-ROMa (25%) 08-ROMa (50%) 08-ROMa (75%) 08-ROMa (100%) 08-ROMb (25%) 08-ROMb (50%) 08-ROMb (75%) 08-ROMb (100%)
Mapping

Time (s, log scale)

Bl Success N Timeout I Out of Memory

Figure 3. Execution time of multivalues, joins and duplicates dataset over BURP. In the multivalued dataset,
the used size is 10K as the rest sizes (100K, 1M, y 10M) runs timed out over BURP.

compared to their ROMb counterparts, even at the same join percentages. This highlights
the overhead introduced by evaluating join relationships during materialization.

Overall, these results emphasize the limitations of current engines in scaling RML-
CC mappings across more complex data patterns. The results show that BURP scales
well on simple datasets up to 1M records, but fails with 10M due to memory limits.
Morph-KGC only completes small cases and times out or lacks support in most ex-
periments, highlighting its current limitations. In contrast, multivalued, duplicate, and
join datasets do not scale: all attempts beyond 10K led to timeouts. Notably, duplication
levels had minimal impact on performance, suggesting no deduplication mechanism in
BURP, and joins (especially with conditions, e.g., ROMa) significantly increased execu-
tion times.

5. Related Work

The recent modular RML ontology [18] introduces a formal and extensible specifica-
tion for the RDF Mapping Language (RML), including the definition of optional mod-
ules such as RML-FNML, RML-CC, or RML-Star. These modules address expressive-
ness limitations of earlier versions, particularly in scenarios involving advanced data
structures or transformation logic. Recent efforts have extended RML engines to support
these advanced features required by real-world knowledge graph generation tasks. Par-
ticularly, Morph-KGC introduces support for RML-star [3], enabling the generation of

May 2025

RDF-star datasets from heterogeneous sources, a capability previously unexplored de-
spite the growing adoption of RDF-star in triple stores. The system demonstrates scala-
bility over large datasets and provides a practical implementation of the RML-star spec-
ification. In parallel, Morph-KGC has also incorporated RML-FNML [2], adding sup-
port for user-defined functions to handle complex data transformations. This enhance-
ment allows integrating Python-based logic within mappings and improves the expres-
siveness and reusability of mappings in industrial contexts. These contributions signifi-
cantly improve the applicability of RML-based systems to more complex and large-scale
data integration scenarios.

The 2024 edition of the Knowledge Graph Construction Challenge' focused on
evaluating the conformance of mapping engines with the latest modular RML specifica-
tion through a comprehensive suite of test cases, including those targeting specific mod-
ules such as RML-CC. Several engines participated in the challenge, including SDM-
RDFizer [15], FlexRML [12], Mapping Template [21], and RDFProcessingToolkit [22].
While these systems demonstrated compatibility with core RML features, only BURP
successfully passed all test cases involving the RML-CC module [10]. This highlights
the current lack of support for more advanced RML modules across existing engines and
underscores the implementation gap that still exists in the ecosystem.

Important note to the reader. During the Knowledge Graph Construction Workshop at
ESWC, [16] presented a new version of SDM-RDFizer that now supports RML-CC at
the 2025 edition of the Knowledge Graph Construction Challenge.!® We were unable to
compare our implementations with SDM-RDFizer due to time constraints and the fact
that it was presented after the submission of our work. Nonetheless, we recognize its
relevance and cite it accordingly via this paragraph.

6. Conclusions and Future Work

This paper presents a complete ecosystem for the declarative generation of RDF Col-
lections and Containers from heterogeneous data sources. While RML-CC was defined
as part of the modular RML ontology, we contribute its implementation in two engines
(BURP and Morph-KGC) and propose YARRRML-CC, an extension of the YARRRML
syntax to support RML-CC features. We also update Yatter to support YARRRML-CC
translation. Validation was conducted using the official W3C KGC CG test suite, which
we also adapted to YARRRML-CC to verify mapping correctness and tool behavior. Ad-
ditionally, we scaled the test cases to assess the performance implications of generating
structured RDF constructs.

As future work, we aim to extend existing benchmarks such as KROWN [23] and
GTFS-Madrid-Bench [5] to include use cases involving RDF Collections and Contain-
ers. This will enable a more thorough experimental evaluation of our approach in real-
world scenarios, covering aspects like modeling expressiveness, performance, and im-
pact on downstream tasks. These extensions will further solidify the role of structured
RDF constructs in practical knowledge graph generation workflows.

Dhttps://w3id.org/kg-construct/workshop/2024/challenge
https://wdid.org/kg-construct/workshop/2025/challenge

https://w3id.org/kg-construct/workshop/2024/challenge
https://w3id.org/kg-construct/workshop/2025/challenge

May 2025

Acknowledgments

The collaboration between the University of Liege and the Universidade de Santi-
ago de Compostela is stimulated by the KG4DI FWO scientific research network
(WO001222N). David Chaves-Fraga is funded by the Agencia Estatal de Investigacién
(Spain) (PID2023-149549NB-100), the Xunta de Galicia Conselleria de Cultura, Edu-
cacion, Formacién Profesional e Universidades (Centro de investigacién de Galicia ac-
creditation 20242027 ED431G-2023/04 and Reference Competitive Group accreditation
20222026, ED431C 2022/19) and the European Union (European Regional Development
Fund ERDF).

References

[1]
[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M.S., Corcho, 0.: Morph-KGC: Scalable
Knowledge Graph Materialization with Mapping Pwartitions. Semantic Web 15(1), 1-20 (2024).
Arenas-Guerrero, J., Espinoza-Arias, P., Bernabé-Diaz, J.A., Deshmukh, P., Sdnchez-Fernandez, J.L.,
Corcho, O.: An rml-fnml module for python user-defined functions in morph-kgc. SoftwareX 26, 101709
(2024)

Arenas-Guerrero, J., Iglesias-Molina, A., Chaves-Fraga, D., Garijo, D., Corcho, O., Dimou, A.: Declar-
ative generation of RDF-star graphs from heterogeneous data. Semantic Web 16(2), SW-243602 (2025)
Chaves-Fraga, D., Endris, K.M., Iglesias, E., Corcho, O., Vidal, M.E.: What are the parameters that
affect the construction of a knowledge graph? In: On the Move to Meaningful Internet Systems: OTM
2019 Conferences: Confederated International Conferences: CoopIlS, ODBASE, C&TC 2019, Rhodes,
Greece, October 21-25, 2019, Proceedings. pp. 695-713. Springer (2019)

Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Corcho, O.: Gtfs-madrid-bench:
A benchmark for virtual knowledge graph access in the transport domain. Journal of Web Semantics 65,
100596 (2020)

Chdvez-Feria, S., Garcia-Castro, R., Poveda-Villalén, M.: Chowlk: from UML-based ontology concep-
tualizations to OWL. In: European Semantic Web Conference. pp. 338-352. Springer (2022)

Das, S., Sundara, S., Cyganiak, R.: R2ZRML: RDB to RDF Mapping Language. W3c recommendation,
World Wide Web Consortium (W3C) (Sep 2012)

Debruyne, C., McKenna, L., O’Sullivan, D.: Extending RZRML with support for RDF collections and
containers to generate MADS-RDF datasets. In: Research and Advanced Technology for Digital Li-
braries - 21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thes-
saloniki, Greece, September 18-21, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10450,
pp. 531-536. Springer (2017).

Debruyne, C., McKenna, L., OSullivan, D.: Extending r2rml with support for rdf collections and con-
tainers to generate mads-rdf datasets. In: Research and Advanced Technology for Digital Libraries: 21st
International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece,
September 18-21, 2017, Proceedings 21. pp. 531-536. Springer (2017)

Debruyne, C., Van Assche, D.: The conformance of an rml processor built from scratch to validate
rml specifications and test cases. In: 5th International Workshop on Knowledge Graph Construction
co-located with 21th Extended Semantic Web Conference (ESWC 2024). CEUR-WS. org (2024)
Freund, M., Schmid, S., Dorsch, R., Harth, A.: Flexrml: A flexible and memory efficient knowledge
graph materializer. In: European Semantic Web Conference. pp. 40-56. Springer (2024)

Freund, M., Schmid, S., Dorsch, R., Harth, A.: Performance results of flexrml in the kgcw challenge
2024. In: Proceedings of the 5th International Workshop on Knowledge Graph Construction co-located
with 21th Extended Semantic Web Conference (ESWC 2024), Hersonissos, Greece (2024)

Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked data generation at
your fingertips! In: The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018 Satellite Events,
Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers 15. pp. 213-217. Springer (2018)
Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., Vidal, M.E.: Sdm-rdfizer: An rml inter-
preter for the efficient creation of rdf knowledge graphs. In: Proceedings of the 29th ACM international
conference on Information & Knowledge Management. pp. 3039-3046 (2020)

May 2025

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Iglesias, E., Vidal, M.E.: Results for knowledge graph creation challenge 2024: Sdm-rdfizer. In: Pro-
ceedings of the 5th International Workshop on Knowledge Graph Construction (2024)

Iglesias, E.A., Vidal, M.E.: Results for knowledge graph creation challenge 2025: Sdm-rdfizer. In: Pro-
ceedings of the 6th International Workshop on Knowledge Graph Construction (2025)

Iglesias-Molina, A., Chaves-Fraga, D., Dasoulas, I., Dimou, A.: Human-friendly rdf graph construction:
Which one do you chose? In: International Conference on Web Engineering. pp. 262-277. Springer
(2023)

Iglesias-Molina, A., Van Assche, D., Arenas-Guerrero, J., Meester, B.D., Debruyne, C., Jozashoori, S.,
Maria, P., Michel, F., Chaves-Fraga, D., Dimou, A.: The RML ontology: A community-driven modular
redesign after a decade of experience in mapping heterogeneous data to RDF. In: The Semantic Web
- ISWC 2023 - 22nd International Semantic Web Conference, Athens, Greece, November 6-10, 2023,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 14266, pp. 152-175. Springer (2023).
Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational and non-relational
databases into RDF with xr2rml. In: WEBIST 2015 - Proceedings of the 11th International Confer-
ence on Web Information Systems and Technologies, Lisbon, Portugal, 20-22 May, 2015. pp. 443-454.
SciTePress (2015).

Michel, F.,, Djimenou, L., Zucker, C.F., Montagnat, J.: Translation of relational and non-relational
databases into rdf with xr2rml. In: 11th International Confenrence on Web Information Systems and
Technologies (WEBIST’15). pp. 443-454 (2015)

Scrocca, M., Carenini, A., Grassi, M., Comerio, M., Celino, I.: Not everybody speaks rdf: knowledge
conversion between different data representations. In: Proceedings of the 5th International Workshop on
Knowledge Graph Construction. CEUR Workshop Proceedings. vol. 3718, pp. 1613-0073 (2024)
Stadler, C., Bin, S.: Kgcw2024 challenge report: Rdfprocessingtoolkit. In: Proceedings of the 5th In-
ternational Workshop on Knowledge Graph Construction co-located with 21th Extended Semantic Web
Conference (ESWC 2024), Hersonissos, Greece (2024)

Van Assche, D., Chaves-Fraga, D., Dimou, A.: Krown: A benchmark for rdf graph materialisation. In:
International Semantic Web Conference (ISWC) (2024 (to appear))

Van Assche, D., Debruyne, C.: BURPing through RML test cases. In: Proceedings of the 5th Interna-
tional Workshop on Knowledge Graph Construction co-located with 21th Extended Semantic Web Con-
ference (ESWC 2024), Hersonissos, Greece, May 27, 2024. CEUR Workshop Proceedings, vol. 3718.
CEUR-WS.org (2024), https://ceur-ws.org/Vol-3718/paper4.pdf

https://ceur-ws.org/Vol-3718/paper4.pdf

