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Abstract. RDF graphs are commonly derived from (semi-)structured
data by applying a set of mappings. RDF graph construction is per-
formed by either materialising or virtualising an RDF graph and several
benchmarks were purposed to measure their performance. However, even
though significantly more materialisation systems exist, most bench-
marks focus on virtualisation systems. Materialisation benchmarks are
currently derived from virtualisation benchmarks, overlooking param-
eters that affect materialisation systems. In this paper, we introduce
KROWN, a new benchmark to investigate the impact of datasets and
mappings on RDF materialisation. We establish several benchmark sce-
narios with various scaling parameters to measure the execution time
and computing resources, e.g., CPU time, and memory consumption.
Through this work, we have now a benchmark suitable for materiali-
sation systems which allows to execute each system in a reproducible
pipeline through our execution framework. Thanks to our benchmark,
we identified parameters which heavily influence the execution of mate-
rialisation systems and no optimizations were explored for them so far.
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1 Introduction

RDF graphs are often derived from heterogeneous (semi-)structured data, e.g.,
databases, JSON, CSV, or XML files. The last decade has seen a shift towards
generating RDF graphs through a set of declarative mappings described through
a mapping language [42] e.g., R2RML [15], RML [17,25], SPARQL-Generate [30],
SPARQL-Anything [14]. RDF graphs are generated by either virtualisation or
materialisation. Virtualisation uses a query and mappings to translate the query
into an equivalent query over the data to generate a RDF graph, only answering
that specific query. Materialisation uses mappings and some data to generate a
RDF graph which is (re-)used then to answer multiple queries.
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Many virtualisation benchmarks were proposed, but no materialisation bench-
marks, despite the plethora of materialisation systems [42]. Virtualisation bench-
marks, e.g., BSBM [9], NPD [28], GTFS-Madrid-Bench [13], evaluate the perfor-
mance of virtualisation systems with respect to increasing data volume and com-
plexity of queries. To the contrary, no materialisation benchmarks were proposed
so far. Instead, most materialisation systems were evaluated by re-purposing vir-
tualisation benchmarks [2], or by creating datasets to evaluate the performance
of specific optimizations, such as joins [12], empty value removal [12,21], or RDF-
Star [3]. Nevertheless, re-purposed virtualisation benchmarks do not evaluate all
parameters that influence the performance of materialisation systems [12,16],
while datasets evaluating specific optimizations do not provide a universal ba-
sis for comparison across all systems. Therefore, a materialisation benchmark is
needed to cover both scaling data and mappings which constitute the input for
materialisation systems with multiple scaling parameters.

In this paper, we introduce KROWN, a new benchmark for materialisation
systems consisting of two parts: (i) a data generator to provide different mate-
rialisation scenarios, and, (ii) an execution framework to automatically execute
reproducible benchmark pipelines. As a large majority of materialisation systems
adopted the RDF Mappping Language (RML) [4,21,22,32,34,43], we consider
this mapping language for our benchmark. Recently, a new version of the RML
specification [25] was published by the W3C Community Group on Knowledge
Graph Construction, as well as a new set of test cases [25] to assess the systems’
compliance. This benchmark complements these resources, supporting the adop-
tion of the RML mapping language and the development of systems with better
performance and use of resources. We summarize our contributions:

1: Data Generator which allows scaling different materialisation scenarios
based upon studied factors that influence materialisation systems [12,16].

2: Execution Framework which automatically executes reproducible bench-
mark pipelines and metrics measurement e.g., execution time, CPU time, and
memory usage. Our data generator generates these pipelines for every scenario
and system, offering a reproducible benchmark pipeline.

3: Evaluation of 5 popular materialisation systems: RMLMapper, RML-
Streamer, Morph-KGC, SDM-RDFizer, and Ontop to show how our benchmark
affects these systems in terms of performance and usage of computing resources.

KROWN’s data generator and execution framework were already adopted as
they were used in the Knowledge Graph Construction Challenge in 2023 [40] and
2024 [41]. KROWN has also been used with different pipelines in benchmarking
incremental mapping execution [44], demonstrating its re-usability.

Thanks to KROWN, we observed limitations in materialisation systems that
had not been previously uncovered by virtualisation benchmarks. Many mate-
rialization systems employ already optimizations to speed up their execution
e.g., parallelization materialisation among multiple CPU cores, physical opera-
tors e.g., indexes to optimize duplicate or empty value removal, and planning
through heuristics or partitioning of Triples Maps to group Logical Sources or
joins. However, not all aspects of materialisation are considered, e.g., the con-
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Table 1. Benchmarks and scenarios comparison. KROWN has more scaling parameters
than other benchmarks and a stand-alone execution framework with flexible pipelines.

Dataset Parameters Execution Generator
Type Size Mapping Join Type Pipeline Own VIG

BSBM Real ✓ None ✓ ✓
GTFS-Madrid Real ✓ None ✓
ForBackBench Re-use ✓ Built-in Fixed Re-use
LUBM(4OBDA) Real ✓ Built-in Fixed ✓
KROWN Synthetic ✓ ✓ ✓ Separate Flexible ✓

KG Parameters Synthetic ✓ ✓ ✓ None ✓
GENOMICS Real None None None
Reification Real ✓ None ✓

struction of RDF Quads involves Named Graphs which prevent parallelization
optimisations of materialisation systems.

The paper is structured as followed: Section 2.2 outlines related work and
Section 3.3 our KROWN benchmark. Section 5.4 presents the results and Sec-
tion 6 discusses them. Section 7 concludes our work and future plans.

2 Related Work

In this section, we discuss existing (i) benchmarks, data generators, and scenar-
ios (Section 2.1), and (ii) RDF materialization systems (Section 2.2).

2.1 Benchmarks, data generators, and scenarios

In this Section, we discuss existing (i) benchmarks to evaluate RDF construction
systems, (ii) data generators for generating benchmarks’ data, and (iii) scenarios
focusing on specific parameters. We consider a benchmark [27] as a standardised
set of scenarios to compare systems in terms of performance or resource con-
sumption. A scenario is a standardised setup for evaluating a system against
multiple parameters with datasets generated through data generators [13]. Data
generators are either entangled with the benchmark or re-usable among multiple
benchmarks. The output is a new dataset scaled according to the parameter(s).

Benchmarks Several benchmarks and scenarios (Table 1) were proposed
over the past decade to evaluate materialisation systems, but most of them are
(i) repurposed from existing virtualisation benchmarks, e.g., BSBM [9], GTFS
Madrid Benchmark [13], NPD [28], LUBM(4OBDA) [5,19], or ForBackBench [1],
(ii) or focus on specific parameters of materialisation e.g., duplicate and empty
value removal (GENOMICS [26]). Some benchmarks feature an execution frame-
work to run the benchmark in a reproducible environment, but these frame-
works are either limited to a specific pipeline e.g., OBDA-Mixer [28] or require
re-implementing the system inside the framework e.g., ForBackBench. No re-
usable execution framework exists with flexible pipelines and multiple scalable
parameters, independently of the scenarios to benchmark.
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The Berlin SPARQL BenchMark (BSBM) [9] assesses virtualisation systems
and triplestores. It provides 3 use cases with different query mixes for query
performance analysis. It has its own data generator which outputs dumps as RDF
or SQL and allows scaling BSBM’s data dumps using a scaling parameter, but its
data generator is entagled in BSBM and is not re-usable for other benchmarks.
A set of R2RML mappings are available to map the SQL data dumps into RDF
which allows repurposing BSBM for materialisation benchmarking. However,
only the dataset size (number of rows) can be scaled, the mappings remain the
same. Therefore, the impact of the mappings cannot be evaluated.

The Norwegian Petroleum Directorate (NPD) benchmark [28] provides a set
of OBDA and R2RML mappings with 31 queries to analyze the performance
and reasoning capabilities of virtualisation systems. It uses the VIG data gener-
ator [29] to scale the number of rows from the Norwegian Petroleum Directorate.

The GTFS Madrid Benchmark (GTFS-Madrid-Bench) [13] is a benchmark
for virtualisation systems, but it was often repurposed to materialisation bench-
mark [4,22]. GTFS-Madrid-Bench uses the same VIG data generator as NPD
and a set of SPARQL queries to analyse the performance of a system. It also al-
lows generating data dumps in SQL, JSON, XML, or CSV formats by converting
the output of the VIG data generator. R2RML and RML mappings are available
for transforming the data dumps into RDF. Scaling individual parameters is not
possible, only the number of rows is scaled and it does not provide an execution
framework for a consistent evaluation environment among all systems.

The ForBackBench [1] analyzes performance of virtualisation systems and
triplestores, with a focus on reasoning. It does not introduce new scenarios, but
combines scenarios from NPD [28], OWL2Bench [35], Deep from chaseBench [7].

The Lehigh University Benchmark (LUBM) [19] is a benchmark for triple-
stores with 14 queries about university data. LUBM4OBDA [5] extends LUBM
to analyze virtualisation systems with RDF-Star support through a set of addi-
tional queries for standard reification, singleton property or RDF-Star.

Data Generators Several data generators were proposed for benchmarks,
some are stand-alone, e.g., VIG while others are specific for the benchmark, e.g.,
UBA. The VIG generator [29] provides a stand-alone re-usable data generator
for benchmarks. However, VIG only scales with a single parameter for the data
size; the RML mappings are not scaled. The UBA data generator [5,19] generates
real-life data about universities for the LUBM and LUBM4OBDA benchmarks.
Only the number of universities scales, the mappings are static. LUBM4OBA
extended the original UBA data generator for RDF reification and RDF-Star.

Scenarios KG Parameters scenario [12] consists of various scenarios to
analyze the impact of dataset size (row/columns), mappings, joins, empty values,
and duplicates on materialisation systems. A set of RML mappings is provided
to map CSV files into RDF. The data is generated through scripts as CSV files
with fixed scaling parameters for each scenario. However, it does not consider
Named Graphs (NG) or cell size as scaling parameters. KROWN extends KG
Parameters’ scenarios with named graphs and cell size parameters, offering a
complete benchmark with a scalable data generator and an execution framework



KROWN: A Benchmark for RDF Graph Materialisation 5

and measuring resource consumption e.g., CPU/RAM, besides the execution
time.

The GENOMICS scenario [26] investigates the impact of empty values and
duplicates on materialisation systems. It does not have a data generator, thus
it cannot be scaled, instead a fixed CSV dump is provided together with RML
mappings to generate RDF. The Reification scenario [24] provides a set of sce-
narios to investigate RDF-Star’s impact on RDF materialisation. The data size
can be scaled and multiple versions of the mappings are provided to investigate
RDF-Star compared to standard reification, named graphs, and N-Ary Relation-
ships. Although this scenario focuses on materialisation, it only covers RDF-Star
and standard reification.

Execution frameworks Some benchmarks provide execution frameworks
to have a reproducible environment and pipeline for the benchmark. UBT is
used in LUBM and executes a fixed virtualisation pipeline to perform data load-
ing and querying with configurable test plans. OBDA-Mixer [28] also executes
a fixed virtualisation pipeline to load the relational database and it was used in
the NPD benchmark for automatized execution. ForBackBench execution frame-
work executes multiple scenarios with a fixed pipeline and it has been used in
ForBackBench to analyze chasing vs query rewriting. However, they cannot be
re-used for constructing alternative pipelines, since they are limited to virtu-
alisation pipelines consisting of a relational database, the system, and query
execution.

2.2 Materialization systems

A recent survey [42] showed that different systems for RDF materialisation exist
to construct RDF graphs from heterogeneous data. These systems leverage differ-
ent mapping languages, such as dedicated mapping languages, e.g., R2RML [15],
RML [17,25], query-based mapping languages e.g., SANSA/RPT [36], SPARQL-
Generate [30], SPARQL-Anything [6], or constraints-based mapping languages,
e.g., ShExML [18]. We focus on materialisation systems with RML since multi-
ple systems exist compared to systems for other mapping languages. In RML, a
Triples Map (TM) creates RDF Triples, a Subject Map (SM) creates the sub-
ject, a Predicate Object Map (POM) the predicate and the object and a Graph
Map (GM) creates the named graph of an RDF Quad.

RMLMapper [17] executes mappings by iterating over Triples Maps. It per-
forms no optimizations: it does not push any task to the relational database,
and performs the joins in memory as a double nested for-loop.

Ontop [10] is a virtualisation system which also supports materialisation.
It implements well-known SQL [33] and join [11,46] optimisations, and push
down of SPARQL functions to the relational database [10]. As a materialization
system (abbreviated as ‘OntopM’), it transforms each Triples Map into a SQL
query which is executed against the relational database, and normalises it with
1 Logical Table, 1 Subject Map, and 1 Predicate Object Map.

SDM-RDFizer [21] employs physical data structures to optimize the exe-
cution of joins through Predicate Join Tuple Maps which perform all joins as
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Fig. 1. KROWN’s benchmark scenarios: raw data, duplicates & empty values, joins,
and mappings. Each scaling parameter per scenario is highlighted.

index based joins [21]. The removal of duplicates and empty values is pushed
to RDBMS by leveraging the DISTINCT SQL operator and a dedicated data
structure (Predicate Join Tuple Table) is used to avoid duplicates during joins.

RMLStreamer [20,32] executes RML mappings in streaming fashion using
Apache Flink. It groups Triples Maps based on their Logical Source and pro-
vides 2 modes: cluster mode to scale horizontally among machines and vertically
among CPU cores, and stand-alone mode to scale vertically among CPU cores
on the same machine.

Morph-KGC [2] relies on mapping planning to process large amounts of data
at scale through parallelization and ensure that no duplicate RDF triples are
generated during parallel execution of mapping partitions. It leverages Python’s
Pandas to perform operations on data, e.g., removing duplicates before executing
the mappings and during joins, and uses the IS NOT NULL SQL operator to
delegate the removal of empty values to RDBMS, but not the joins’ execution.

CARML [31] supports RML, but it does not allow to use relational databases
as data source yet. It also employs a streaming based process, similar to RML-
Streamer, but without scaling horizontally among machines.

3 KROWN: Knowledge Graph Construction Benchmark

In this Section, we introduce (i) the benchmark scenarios we generate, (ii) the
data generator for generating synthetic data, and (iii) the execution framework
for a reproducible execution of the benchmark scenarios against any system.

3.1 Benchmark scenarios

In this work, we consider several benchmark scenarios (Figure 1): (i) raw data,
(ii) duplicates and empty values, (iii) mappings, and (iv) joins based on the
parameters introduced by Chaves et al. [12] and Dimou et al. [16], and new
parameters e.g., cell size for raw data and Graph Maps (GM) for mappings.
Our scenarios can be scaled indefinitely with a set of parameters through our
data generator and are executed with our execution framework. Samples of each
scenario are available in KROWN’s repository [38].

The Raw Data scenario contains 3 parameters: number of rows, number of
columns, and cell size to investigate the data size impact on RDF construction.
KROWN currently uses references in the generated mappings to refer to the
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data. IRI templates, different data types, and language tags are planned for the
future. The number of rows scales the data vertically by increasing the number
of rows. The higher the number of rows, the more data needs to be processed.
The number of columns scales the data horizontally by increasing the number
of columns per row. The higher the number of columns, the more data per row
needs to be processed. The cell size scales the actual cell value that is present
in the data. The higher the cell size, the bigger a cell is to process.

The Duplicates and Empty Values scenario benchmarks the impact of
duplicated and empty values in a dataset on RDF construction as more dupli-
cated and empty values require RDF triplestores to remove them during the
loading phase. The percentage of duplicate values scales the amount of du-
plicates in the data. KROWN’s data generator use the same duplicated value
across the data, but different variants are planned where multiple duplicated val-
ues are used across the data. Similarly, the percentage of empty values scales
the amount of empty values in the data. The higher the percentage, the more
empty or duplicate values are present which need to be removed.

The Mappings scenario assesses the impact of different types of RML
mappings with the following parameters: number of Triples Maps (TM), Pred-
icate Object Maps (POM), and Graph Maps (GM). The number of Triples
Maps (TMs) specifies how many TMs exist in the RMLmapping. The higher the
number of TMs, the more different RDF subject terms will appear in the RDF
graph. The number of Predicate Object Maps (POMs) specifies how many
POMs are specified in the RML mapping. The higher the number of POMs, the
more predicates and objects are generated for a subject. The number of Graph
Maps (GMs) specifies how many GMs are specified for TMs and POMs. If mul-
tiple GMs are specified for the same RDF Subject/Predicate/Object, multiple
RDF Quads are generated as each RDF Quad has its own Named Graph (NG).
For example: if 2 NGs are specified for the same RDF terms, the RDF terms will
be generated twice, each one in a different NG. NGs can be static (rr:constant)
or dynamic from the dataset (rr:template) and may appear in a a Subject Map
(SM) for the whole TM or in each POM.

The Joins scenario consists of several parameters: amount of data involved
in joins, join relations, multiple join conditions, and duplicates involved in joins.
The amount of data involved in joins scales the percentage of the data that
results in a join to investigate the join selectivity. The higher the percentage, the
more data which will result in a join. The join relations parameter scales the
N-M join relations to investigate the impact of different types of join relations.
The higher the N or M relation values, the more data results in a join. For
example: N=1 and M=5 (1-5) results in every join with 1 entry from the dataset
and 5 entries from the other dataset. The join conditions parameter scales
the number of join conditions that must be valid to result into a join. More join
conditions means more comparisons to perform for the data to check if it should
result into a join or not. The join duplicates parameter scales the number of
duplicates that are generated by a join. The more duplicates are generated by a
join, the more duplicates that must be removed.
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Fig. 2. KROWN’s benchmark pipeline consists of a data generator and execution
framework which both can be used stand-alone.

3.2 Data generator

KROWN’s data generator (Figure 2) uses synthetic data with fully configurable
parameters for each scenario. It generates the datasets, mappings, and pipeline of
any scenario with any RDF construction system, e.g., raw data (rows, columns,
cell size), RML mappings (TMs, POMs, GMs), duplicated and empty values,
and joins (1-1, 1-N, N-1, N-M relations, duplicates, conditions, selectivity).

Our data generator generates synthetic data to scale the different material-
isation parameters for our scenarios. It generates R2RML mappings to remain
compatible with all systems as each R2RML mapping can be transformed into
a RML mapping by replacing the R2RML’s Logical Table with a RML’s Logical
Source. Some systems use R2RML’s Logical Table description to generate op-
timised SQL queries for the RDBMS. Therefore, KROWN is configured in this
work to generate tabular data, but it can be extended to support other data
formats as well e.g., JSON or XML. KROWN’s data generator can scale one
or multiple parameters by a set of configuration files and new scenarios can be
added, re-using the existing synthetic data generation. It extends the proposed
parameters further by adding cell size parameter for raw data scaling and GMs
for RML mappings. We add cell size scaling because most RDF construction
systems optimise for row and column based parallelisation without taking into
account the size of the cell in a row/column. GMs are added to investigate the
impact of RDF Quads generation upon system since existing optimisations fo-
cus on TMs and POMs without considering NGs. Through our data generator,
any parameter of each scenario can be scaled indefinitely which allows us to
benchmark systems in the future against bigger parameter scalings while using
the same data generator. We focus on synthetic data to analyse the impact of
each scaling parameter on materialisation systems, but KROWN can also handle
real-world data such as GTFS-Madrid-Bench [13].

3.3 Execution framework

KROWN has also a stand-alone execution framework (Figure 2) to execute
pipelines based on Docker containers in a reproducible way. During execution,
the framework automatically measures metrics e.g., execution time, CPU time,
and memory consumption. The execution framework initialises all resources e.g.,
relational databases, systems, etc. Afterwards, the configurable pipeline is exe-
cuted multiple times. After all pipelines are executed, statistics are calculated
e.g., min, max, median on every measured metric. Since our pipelines can be
configured, our execution framework is not limited to pipelines in this work.
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Table 2. Parameter values for each scenario in our evaluation.

Scenario Parameter values

Raw data: rows 10K, 100K, 1M, 10M
Raw data: columns 1, 10, 20, 30
Raw data: cell size 500, 1K, 5K, 10K

Duplicates: percentage 0%, 25%, 50%, 75%, 100%
Empty values: percentage 0%, 25%, 50%, 75%, 100%

Mappings: TMs + 5POMs 1, 10, 20, 30 TMs
Mappings: 20TMs + POMs 1, 3, 5, 10 POMs
Mappings: NG in SM 1, 5, 10, 15 NGs
Mappings: NG in POM 1, 5, 10, 15 NGs
Mappings: NG in SM/POM 1/1, 5/5, 10/10, 15/15 NGs

Joins: 1-N relations 1-1, 1-5, 1-10, 1-15
Joins: N-1 relations 1-1, 5-1, 10-1, 15-1
Joins: N-M relations 3-3, 3-5, 5-3, 10-5, 5-10
Joins: join conditions 1, 5, 10, 15
Joins: join duplicates 0, 5, 10, 15

4 Evaluation

In this Section, we describe materialisation systems we benchmark, our bench-
mark configuration, and our experimental setup.

Materialisation systems. We consider the most popular [R2]RML systems
in our benchmark which are actively maintained, open source, and support
SQL databases: RMLMapper v6.0.0 [17] as a baseline without any optimisa-
tions, SDM-RDFizer v4.6.3.4 [21] for its joins and duplicate/empty value opti-
misations, Morph-KGC v2.1.1 [2] due to its parallelisation optimisation, RML-
Streamer v2.5.0 [20,32] in stand-alone mode because of its streaming capabilities.
We do not use cluster mode as it requires more machines which would be unfair
for the other systems. Support for cluster mode is planned for the future. To
compare the RMLStreamer for its joining capabilities, we execute it with CSV
data (RMLStreamer-CSV ) because its SQL support cannot handle joins prop-
erly with SQL databases yet, timing out on all cases related to joins. For all
other scenarios, we use RMLStreamer with a SQL database. Join selectivity sce-
nario did not provide interesting results due to optimisations (see Zenodo [39]).
OntopM v4.2.0 [10] as it is a well established virtualisation system but we assess
its capacity as materialisation system too. SANSA/RPT [36] and CARML [31]
were excluded because they do not support SQL databases yet.

Experimental setup. We select certain values for KROWN’s scenario parame-
ters to benchmark RDF materialisation systems, but KROWN is not limited to
these values. Table 2 lists the values we use in our evaluation for each scenario.
We use the measured metrics (execution time, CPU time, and peak memory us-
age) by KROWN’s execution framework in our evaluation. Measured metrics are
the total resource consumption of both the RDBMS and materialisation system.

We execute our experiments on Ubuntu 22.04 LTS machines (Linux 5.15.0,
x86 64) with each Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 48 GB RAM
memory, and 2 GB swap memory. All experiments are executed 5 times with a
time-out of 6 hours from which we report the median value of the metrics. Output
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of each RDF construction system is set to N-Triples or N-Quads in case of Named
Graphs because it is supported by all systems we evaluate. We use PostgreSQL
14.5 as RDBMS without configuring any additional RDBMS indexes. Generated
RDF is checked by isomorphic comparison for each benchmark scenario using
a small scaling parameter and a triple count on larger scaling parameters due
to memory constraints. All systems involved in the benchmarks are executed as
Docker containers and configured according to their documentation. KROWN’s
resources are available on DockerHub [37], GitHub [38], and Zenodo [39].

5 Results

In this section, we discuss the results (Table 3) obtained from executing Know-
Bench on the materialisation systems we selected in Section 4.

5.1 Raw data scenario

We present the raw data scenario results (Table 3) for scaling the number of
rows, columns, and cell size in terms of execution time, CPU time, and memory.

Execution time Morph-KGC is the fastest materialisation system because it
parallelises its execution through partitioning of the Triples Maps. SDM-RDFizer
executes bigger value sizes (10K), but it is slower than Morph-KGC. OntopM can
also execute this scale and other scalings, but slower than SDM-RDFizer. Both
OntopM and SDM-RDFizer finish all the scalings while others run out of memory
(Morph-KGC, RMLMapper) or time out (RMLStreamer). RMLStreamer is also
slower than Morph-KGC, but does not run out of memory due to its streaming
capabilities as Morph-KGC, instead it times out for the bigger scalings.

CPU time RMLMapper consumes the least amount of CPU resources because
it does not optimize its execution through parallelisation or planning compared
to the other systems. Morph-KGC uses the most CPU time during its short
execution time (burst), OntopM uses more but spread over a longer period of
time. RMLStreamer consumes the most CPU time because of its parallelisation
features. Flink – on which RMLStreamer is based upon – parallelises its tasks
among multiple CPU cores resulting in higher CPU time usage. While Morph-
KGC also uses parallelism for its execution, Morph-KGC is more efficient in
CPU time usage compared to RMLStreamer.

Memory SDM-RDFizer uses the least amount of memory in exchange for a
longer execution time. Morph-KGC is faster, but runs out of memory in bigger
scales as it loads all data for each parallel process separately, consuming more
memory, while OntopM does not increase its memory usage heavily as the scale
increases. RMLStreamer’s memory usage increases with the scaling because SQL
databases are not optimized in the same way as CSV files [45]. RMLMapper runs
out of memory faster because it loads everything in memory.

5.2 Duplicate & empty values scenario

We present the results of the duplicate and empty value scenario (Table 3) for
each system in terms of execution time, CPU time, and memory consumption.
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Execution time Morph-KGC is the fastest system when scaling the amount
of duplicates or empty values in the dataset because Python’s Pandas removes
duplicates and empty values efficiently. RMLStreamer uses the same amount of
time for any scaling as it does not remove duplicates, while the RMLMapper be-
comes faster with a higher scaling for both duplicates and empty values, because
it processes less data. SDM-RDFizer also becomes faster when more duplicates
are involved because it optimises for duplicate removal. In the case of empty val-
ues, it reaches its optimum with 50% empty values. Despite SDM-RDFizer’s op-
timisations, Morph-KGC is still faster. OntopM reduces its execution time when
more empty values or duplicates are involved, ultimately surpassing Morph-KGC
on scaling 100%, by pushing down the removal to the relational database.

CPU time Almost all systems reduce their CPU time with more duplicates
or empty values involved, except for SDM-RDFizer. SDM-RDFizer performs
extensive execution planning for empty values and duplicates removal which
affects its CPU time usage.

Memory SDM-RDFizer consumes the least amount of memory, increasing
the scaling results into even lower memory consumption, thanks to its memory
optimisations. RMLMapper’s memory consumption is rather similar no matter
the scaling because all data is loaded into memory. OntopM lowers its mem-
ory consumption significantly with more duplicates or empty values, removing
duplicates and empty values from its memory. Morph-KGC and RMLStreamer
slightly lower their consumption, but not significant.

5.3 Mapping scenario

We present the mapping scenario results for each system for (i) number of Triples
Maps, (ii) number of Predicate Object Maps, and (iii) Graph Maps.

Triples Maps and Predicate Object Maps scenarios scales either the
number of TMs or POMs with a fixed data size (Table 3).

Execution time All systems increase their execution time when more Triples
Maps or Predicate Object Maps are defined in the RML mappings. RML-
Streamer scales the best among Triples Maps and Predicate Object Maps be-
cause Flink optimises the execution in parallel better than Morph-KGC. While
Morph-KGC is faster with smaller mappings, RMLStreamer becomes faster from
20 Triples Maps and higher. Morph-KGC and RMLStreamer both double their
execution time when the number of Predicate Object Maps become a magnitude
bigger. OntopM’s execution time increases equally with the number of TMs or
POMs since OntopM normalises the mappings to have multiple TMs with each
1 POM. RMLMapper and SDM-RDFizer increase their execution time faster
when the number of TMs increases compared to the number of POMs.

CPU time Systems parallelizing the execution of TMs and POMs (RML-
Streamer, Morph-KGC) increase their CPU time usage more compared to other
systems in exchange for a lower execution time. OntopM’s CPU time increase lin-
early with the number of POMs, but not with the number of TMs. RMLMapper
and SDM-RDFizer have a steady increase in CPU time for both scalings.
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Fig. 3. Results for the Graph Maps subscenarios: scaling the number of POMs with
1 Named Graph (NG) (top) and scaling the number of NGs from 5 to 15 Statically
(S) and Dynamically (D) in a Subject Map (bottom). RMLMapper always times out,
RMLStreamer does not support multiple GMs. SDM-RDFizer fails the multiple GMs
with an error. All systems fail or time out (TO) after 6 hours the 15NG dynamic case.

Memory SDM-RDFizer remains the most efficient system regarding mem-
ory due to its memory optimisations in exchange for a slower execution time.
RMLStreamer has a steady memory consumption once it scales past the smallest
scaling because of its streaming capabilities. OntopM also has a fixed memory
usage. Morph-KGC increases its memory consumption by a factor of 3-4 times
when scaling up because it loads everything in memory for each parallel process.

Graph Maps (GM) scenario scales the number of NGs in SMs and POMs.
We also scale the number of POMs with a single Graph Map (Figure 3).

Execution time All systems 4 increase their execution time with more GMs
generating NGs. When the NG is a constant value (rr:constant), the execution
time is lower than when the NG’s IRI is generated dynamically (rr:template).
Morph-KGC times out when a SM consist of 10 or 15 dynamical GMs because
it cannot apply its parallelism optimisation. OntopM also times out with 15
dynamic GMs in a SM. RMLMapper times out in all scalings.

CPU time All systems increases their CPU time usage with more GMs in SM
or POMs. Morph-KGC and OntopM are the most affected in CPU time usage.

Memory SDM-RDFizer’s memory optimisations do not consider GMs, its
memory usage increases by a magnitude when increasing the number of POMs
from 1 to 15 with 1NG. SDM-RDFizer fails to execute mappings with multiple
dynamic GMs with an error when assigning the GM to a TM in its code. Morph-

4 RMLStreamer only supports 1 GM/SM or POM, thus we cannot investigate its
performance when the number of GMs increase.
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Fig. 4. Results for join scenarios: number of join duplicates (left), number of join
conditions (middle), and join relations N-M (right). RMLStreamer-CSV is excluded
from number of join conditions because it does not support multiple join conditions.
RMLMapper times out (TO) after 6 hours for 5,10, 15 join conditions.

KGC increases its memory usage heavily when more GMs are involved while
RMLStreamer and OntopM remain consistent no matter the number of GMs.

5.4 Joins scenario

We present (Figure 4) for each system how it performs regarding (i) N-M join
relations, (ii) join conditions, and (iii) duplicates generated during a join.

Execution time Morph-KGC is the fastest system, OntopM is almost as fast
as Morph-KGC, followed by RMLStreamer and SDM-RDFizer, RMLMapper is
the slowest. Morph-KGC leverages Python’s Pandas to execute joins which are
optimized compared to RMLMapper. RMLStreamer does the same, but uses
Apache Flink instead. OntopM has also join optimisations from the relational
database. Execution time is affected by the N-M join relation, a N-1 join is
faster than a 1-N or N-M relation. If a join has multiple conditions, Morph-
KGC’s execution time increases because it uses a different join algorithm of
Pandas with multiple join conditions. OntopM is unaffected as the join is pushed
to the relational database. SDM-RDFizer is unaffected because of its physical
operators5. RMLMapper times out with multiple join conditions.

5 RMLStreamer does not support multiple join conditions.
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CPU time RMLMapper consumes the most CPU time with joins because it
has no optimisations for executing joins. All other systems have optimisations
(push to relational database, physical operators) which reduces the CPU time.

Memory All systems’ memory usage is affected by the N-M relation. A N-1
relation has a lower execution time, but a higher memory consumption since
join results are kept in a Predicate Join Tuple Table by SDM-RDFizer, in a
cache by RMLMapper, etc. All systems have a similar memory consumption for
duplicates during joins or multiple join conditions.

6 Discussion

As we observe from the results (Section 4) we got after benchmarking different
materialisation systems with KROWN, materialisation systems employ paral-
lelisation e.g., Morph-KGC [2], RMLStreamer [20], to reduce execution time in
favor of a higher CPU time and memory consumption. Some systems e.g. SDM-
RDFizer [21] reduce their memory consumption in favor of execution time by not
keeping all data in memory. However, access then to the data is slower because
it must be loaded first into memory.

Physical operators e.g., hashtable indexes for duplicate and empty value re-
moval, and planning e.g., partitioning of Triples Maps are employed by systems,
e.g., SDM-RDFizer, Morph-KGC, to reduce their execution time and memory
consumption. By planning the execution properly, the data has to be loaded
only once, even when joins are involved. This way, the slow access time from
disk only occurs once while memory consumption is reduced as the data can be
removed from memory once it is not needed anymore according to the planning.

However, optimisations (Morph-KGC, RMLStreamer, SDM-RDFizer, On-
topM) cause additional overhead when executing mappings such as increasing
CPU time Systems not applying any optimisations (RMLMapper [17]) have a
lower CPU time for smaller datasets without any joins.

While many optimisations have improved materialisation systems over the
past decade, they do not consider all aspects of datasets and mappings for mate-
rialisation systems, e.g., parallelisation of mapping execution is not possible when
Named Graphs occur in the mapping. Thanks to KROWN, we observe that exist-
ing parallelisation approaches, e.g., Morph-KGC, cannot handle Named Graphs
in mappings, since they only consider RDF Triples instead of RDF Quads when
applying parallelisation. Furthermore, physical operators and planning optimi-
sations for memory consumption, e.g., SDM-RDFizer, only consider the row and
column of datasets without the size of the actual cell. If the cell size increases,
the memory consumption increases accordingly.

Beyond the evaluation’s results of our KROWN benchmark, KROWN was
also applied during the Knowledge Graph Construction Challenge 2023 [40] &
2024 [41]. In this Challenge, participants use scenarios generated by KROWN’s
data generator to benchmark their RDF construction systems with KROWN’s
execution framework. KROWN’s execution framework captures the metrics e.g.,
execution time, CPU time, and memory usage for participants. Through KROWN,
participants identified bottlenecks in their systems and improved them for the
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next edition of the Challenge. Moreover, KROWN allows to customize the ma-
terialisation pipeline and select the right system for a task. Based on the feed-
back of the ESWC 2023 edition, we improved KROWN and noticed that par-
ticipating systems [31,45,23,8] improved e.g., RMLStreamer gained SQL sup-
port while CARML works on it, SDM-RDFizer received stability improvements
and reported issues with KROWN’s execution framework, and SANSA/RPT
gained initial RML support. KROWN’s execution framework is also re-used in
IncRML [44] measuring the performance of incremental RML mappings on data
changes. KROWN’s sustainability plan [38] relies on the community to further
expand KROWN for newer editions of the Challenge for gaining scenarios to
benchmark FnO functions, RDF-Star, RDFS Collections and Containers which
are introduced by the new RML specification [25], more benchmark scenarios
e.g., language tags, data types, duplicate value variants, or IRI templates, and
support for benchmarking across multiple machines. While we focus in this work
on materialisation systems, KROWN’s could also be applied on virtualisation
systems. KROWN already supports RDF triplestores and SPARQL queries.

7 Conclusion

In this paper, we introduce KROWN, a benchmark for RDF materialisation
systems to evaluate their performance and usage of computing resources e.g.
CPU time and memory. Our benchmark contains a data generator to scale any
scenario unlimited through a set of scaling parameters e.g. data size, mappings
and an execution framework for executing the scenarios in a reproducible way.

Through KROWN, we discover 2 limitations: (i) Named Graphs, and (ii)
cell size. Named Graphs are not considered in existing RDF materialisation
optimisations, causing them to fail, resulting in increased execution time and
consumption of computing resources. Since optimisations slice data by row and
column, the cell size is not considered, resulting in out-of-memory situations.

Further research includes applying KROWN on more systems and even bigger
scalings such as data formats (e.g. XML, JSON), sizes, mappings, and joins to
push the most performant systems to their limits. This way, we open the path
towards more optimisations for both computing resources and execution time.

Resource Availability Statement KROWN’s source code and documentation
are available on GitHub [38]. KROWN benchmark’s results are available on
Zenodo[39]. Docker images for the experiments are available on DockerHub [37].
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