
Propagating Ontology Changes to Declarative
Mappings in Construction of Knowledge Graphs
Diego Conde-Herreros1,∗, Lise Stork2, Romana Pernisch2,3, María Poveda-Villalón1,
Oscar Corcho1 and David Chaves-Fraga4

1Universidad Politécnica de Madrid, Ontology Engineering Group, Boadilla del Monte, Spain
2Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, Netherlands
3Elsevier, Discovery Lab, Amsterdam, Netherlands
4Universidade de Santiago de Compostela, Departamento de Electrónica e Computación, Santiago de Compostela, Spain

Abstract
Knowledge Graphs (KGs) are usually constructed through a set of data transformation pipelines that turn
heterogeneous sources into triples following a set of rules. These rules, usually in the form of mapping
rules (e.g., RML, R2RML, etc.), are a key resource for the construction of the KG as they describe the
relationship between the input data sources and the ontology terms. Several efforts have been made to
manage and describe the evolution of the ontology; however, its propagation over interrelated assets
(e.g., mapping rules) is commonly done in manual processes. In this paper, we present a preliminary
approach to automatically project the evolution of the ontology on the mapping rules used to construct
the KG. For each potential change, we analyse the impact on the mappings and the required steps to
ensure that the KG is up-to-date w.r.t. the ontology. We implement our solution in fully declarative
workflows and demonstrate its benefits in a real-world project in the public procurement domain.

Keywords
Knowledge Graphs, Ontology Evolution, Mapping Rules, Impact Assessment

1. Introduction

Knowledge Graphs (KGs) have emerged as a powerful mechanism for representing and integrat-
ing data on the web. KGs are often constructed from data sources in diverse formats (e.g., CSV,
JSON, etc) using a set of mappings that describe the relationship between the data and terms (i.e.
classes and properties) from a target ontology. Mapping rules can be described declaratively
using languages such as R2RML [1], RML [2, 3] and SPARQL-Anything [4]. When the ontology
is changed, mappings usually have to be manually modified. This is a very knowledge and
time-intensive task, and is thus not sustainable.

The construction of a knowledge graph is formally defined as a data integration system
𝐷𝐼𝑆 = (𝑂, 𝑆,𝑀), where 𝑂 is the ontology or vocabulary that defines the global view, 𝑆 are

KGCW’24: 5th International Workshop on Knowledge Graph Construction, May 26th, 2024, Crete, Greece
∗Corresponding author.
Envelope-Open diego.conde.herreros@upm.es (D. Conde-Herreros); l.stork@vu.nl (L. Stork); r.pernisch@vu.nl (R. Pernisch);
m.poveda@upm.es (M. Poveda-Villalón); oscar.corcho@upm.es (O. Corcho); david.chaves@usc.es
(D. Chaves-Fraga)
Orcid 0000-0002-4788-1509 (D. Conde-Herreros); 0000-0002-2146-4803 (L. Stork); 0000-0001-8590-1817 (R. Pernisch);
0000-0003-3587-0367 (M. Poveda-Villalón); 0000-0002-9260-0753 (O. Corcho); 0000-0003-3236-2789
(D. Chaves-Fraga)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:diego.conde.herreros@upm.es
mailto:l.stork@vu.nl
mailto:r.pernisch@vu.nl
mailto:m.poveda@upm.es
mailto:oscar.corcho@upm.es
mailto:david.chaves@usc.es
https://orcid.org/0000-0002-4788-1509
https://orcid.org/0000-0002-2146-4803
https://orcid.org/0000-0001-8590-1817
https://orcid.org/0000-0003-3587-0367
https://orcid.org/0000-0002-9260-0753
https://orcid.org/0000-0003-3236-2789
https://creativecommons.org/licenses/by/4.0

a set of input sources to be integrated w.r.t. 𝑂, and 𝑀 are a set of rules that describe the
relationship between 𝑂 and 𝑆 [5]. In this context, ontologies can evolve by incorporating new
knowledge or changing the representation of the domain [6]. Ontology evolution has been
widely investigated in previous works [7], for instance defining possible change operations [8],
developing ontologies to describe these changes [9] or creating new ontology engineering
methodologies that consider ontology evolution [10]. There have been theoretical studies of
how ontology evolution impacts KG construction and mappings, such as [11], where mappings
are updated so that they answer the competency questions for DL-Lite𝑅 ontologies, however,
there have not been studies that have resulted in engines that semi-autonomously propagate
ontology changes to RML mappings.

During the construction and maintenance of a KG, updates to the underlying ontology
impact associated assets, such as mapping rules. For example, if a new class is incorporated
into the ontology, mapping rules need to describe the relationship between that class and the
input sources. Currently, there is no standard methodology to describe the evolution of an
ontology [12]. Moreover, changes to the mapping rules are commonly implemented manually,
since there are no tools that keep track of ontology changes and incorporate them into the
mappings automatically.

In this paper, we present Ontology Changes Propagation to KG (OCP2KG), a novel framework
to describe ontology changes, and propagate them over mapping rules, used for knowledge
graph construction from diverse input sources. Following a fully declarative pipeline, we
represent the changes of the ontology between two consecutive versions with an extension of
previous work by Palma et al. [9]. Taking into account these changes, we study their impact on
the mapping rules used for constructing the knowledge graph. Finally, changes to the ontology
are propagated to the mapping rules, producing a new version of the mappings that is based on
the new version of the ontology. The latter allows knowledge engineers to construct a KG that
is compliant to the new version of the ontology.

This paper is divided as follows: Section 2 describes a motivating scenario from the public
procurement domain. Section 3 presents the related work and the background concepts. Sec-
tion 4 describes the impact of each ontology change on the mapping rules, and Section 5 shows
the implementation of our tool as a fully declarative pipeline. Section 6 presents a case study
of our approach in a real project, the EU Public Procurement Data Space. Finally, Section 7
outlines the main conclusions of the paper and future lines of work.

2. Motivating example

The EU Public Procurement Data Space (PPDS)1 aims to provide a semantic layer of public and
private procurement data across Europe. The main objective is to calculate a set of standard
performance indicators for each EU member state following a systematic approach. Technically,
PPDS aims to construct a decentralised KG, by declaratively mapping any procurement data
from each member state to the e-Procurement Ontology (ePO)2. However, the ontology’s
development remains ongoing, resulting in continuous updates with the integration of new

1https://europa.eu/!qx9WxQ
2https://docs.ted.europa.eu/EPO/latest/

https://europa.eu/!qx9WxQ
https://docs.ted.europa.eu/EPO/latest/

ePO v1.0

ePO v1.1

Impact
Assessment

…

Declarative KGC

Declarative KGC

Declarative KGC

Declarative KGC

release_notes
v1.0 → v1.1

Knowledge
Engineer

Manual
Task

Figure 1: Motivating Scenario in the EU Public Procurement Data Space. Release notes are
provided in HTML documents and processed by knowledge engineers, to understand and implement
changes over RML mappings which generate a KG for each member state.

features and knowledge. The ontology code is publicly available in a GitHub repository3 and
changes between consecutive versions are documented in the form of HTML files4.

The PPDS relies on the e-Procurement Ontology to map data of each member state into
RDF. The mappings are specified in RML [3], and most of the data are provided as XML files.
Currently, each time a new version of ePO is released, PPDS knowledge engineers process the
release notes and manually accommodate the associated mappings to produce the desirable RDF.
In the case of PPDS, these steps need to be repeated for each member state, as the input sources
differ. Figure 1 exemplifies this scenario: the left side shows an excerpt of the ontology changes
between two consecutive versions of the ontology, and the right side showing how knowledge
engineers process the changes to update the dependent RML mappings and KG. It is clear that
this produces a non-maintainable KG lifecyle procedure, as each time a new version of the
ontology is released, knowledge engineers have to manually implement these changes over the
mappings, a time-intensive process that heavily relies on domain and technical expertise. This
is a common situation for many KG-driven projects, where there are no standard frameworks
or guidelines to manage the evolution of interrelated assets used to construct the KG.

Taking into account the benefits of describing all these assets in RDF, being interoperable
among them, it is possible to develop a framework that pursues the automation of the impact
of ontology changes on mappings, facilitating the construction of the knowledge graph. The
improvements on the knowledge graph construction process are the following: First, the amount
of manual work done by the knowledge engineers will be drastically reduced, only required
when new knowledge needs to be integrated (e.g., adding a new class to the ontology). Second,
the KG construction pipeline can be informed about new rules to be processed, avoiding the
necessity of re-generating the complete knowledge graph from scratch, which is currently the
common practice. The latter will also reduce execution time and memory consumption.

3https://github.com/OP-TED/ePO
4https://docs.ted.europa.eu/EPO/latest/release-notes

https://github.com/OP-TED/ePO
https://docs.ted.europa.eu/EPO/latest/release-notes

3. Background & Related Work

To the best of our knowledge, no work as of yet provides tools for the (semi)automated prop-
agation of OWL ontology changes to dependent artifacts, such as mapping rules. We, thus,
describe related work with respect to ontology change management and the automated creation
or refinement of ontology-dependent artifacts, specifically RML mappings.

3.1. Related Work

Ontology Change Management. Ontology change management or ontology evolution
management addresses the need for change in ontologies underlying ontology-based data
management systems. When application requirements change, often the underlying ontology
needs to change as well [13]. For a detailed work on knowledge graph evolution, we refer the
readers to Polleres et al. [7].

The authors of [14] describe requirements for ontology change management, stating that:
users should be able to resolve ontology changes, ensuring consistency of all dependent artifacts;
users should be helped in managing changes easily; and advice should be given on refinement
in the ontology lifecycle. The authors define four phases for ontology change management:
representation, change semantics, implementation, and change propagation (to dependent
artifacts). Since then, many ontology evolution frameworks have been published [10, 15, 16].
Khattak et al. [17], for instance, define a a change history management framework for evolving
ontologies, that enables backtracking changes via change history logs, allowing users to revert
changess. It manages issues related to change management in evolving ontologies, such as
versioning, provenance, consistency, recovery, change representation and visualization.

The important part of change propagation is the availability of change documentation. In the
case that an ontology is updated by a third party, such as in our ePO use case, changes need to
be detected after the fact and stored in an interoperable format. Many approaches for classifying
change operations between ontology versions have been proposed in the past. One example
is COnto-Diff [8], a tool that compares two versions of an ontology and detects and extracts
a set of basic change operations that have occurred between the two versions. Then, using a
rulebased approach, the tool can detect more complex change operations. TDDonto2 [18] or
DynDiff [19] are other examples. Most of these approaches, however, all follow their own change
classification and export format, hampering interoperability. Moreover, many implementations
are over ten years old [8], of a limited implementation, plugin [18] or not available at all [19].
There are additional downsides of using ontology diffs rather than tracked changes. The after-
the-fact change detection is a heuristic approach as a mapping between entities needs to be
established first. Further, the order of changes can only be established to some extend and
the intend behind edits can also not be identified [20]. However, given the lack of standard in
tracking and sharing changes, we need to rely on these approaches at this point in time.

Whereas some of the above-mentionedworks indicate the importance of propagating ontology
changes to dependent artifacts, and use cases such as that of section 2, no works, provide tools for
the (semi)automated propagation of changes to dependent artifacts. Moreover, most approaches
for producing change documentation lack a standardised vocabulary.

Automated Mapping Extraction and Refinement. Creating RML mapping rules is a time-
consuming task that heavily depends on domain expertise. Whereas no methods as of yet
exist that mitigate the (semi)automated update of mapping rules from ontologies, there are
some works that automatically extract or refine mapping rules from relational databases (RDBs),
ontologies or RDF data. We mention the most relevant ones below.

Some works, such as MIRROR [21] or BootOX [22], bootstrap the creation of mappings
by automatically extracting them from schemas of RDBs [23]. In doing so, some works use
features from the target ontology together with those from the RDB [24]. OWL2YARRRML5,
used as a tool in [25], automatically generates YARRRML templates from ontologies. Lastly,
[26] semi-automatically refine existing RMLmappings based on the results of linked data quality
assessments. There has been theoretical studies in the propagation of ontology changes to
mappings, [11] studies the evolution of ontology based data access (OBDA) specifications and
modifications to mappings fow DL-Lite𝑅 expressed ontologies.

In our work, however, we do not create mappings from scratch. Instead, we define declarative
rules that dictate how updates to an ontology change the dependent mappings. This mitigates
the work of ontology and knowledge graph engineers in semi(automatically) propagating
ontology changes to dependent artifacts.

3.2. Background: The RDF Mapping Language

We rely on the RDF Mapping Language [2, 3] (RML), a mapping language that defines how
to relate heterogeneous data and ontology terms to generate RDF. It is a generic language
that extends R2RML [1], the W3C Recommendation for mapping relational databases to RDF.
RML allows the definition of mappings from multiple heterogeneous sources, leading to higher
integrity and richer interlinking among resources. The main components of an RML mapping
are the following:

1. rml:TriplesMap: It specifies the rules for translating each row of a database or a CSV,
element of XML, etc. to RDF triples. It usually generates instances of one or several
classes of the ontology. It contains one rml:logicalSource, one subject map, and zero
to multiple rml:predicateObject Maps.

2. rml:logicalSource: It describes the input source to be mapped to RDF. Within it, the
rml:source locates the input data source, rml:iterator defines the iteration loop for
mapping the data, and the rml:referenceFormulation term specifies the way the map-
ping engine has to parse the input data (e.g. in CSV the rows, in XML the XPath, in JSON
the JSONPath, etc.).

3. rml:subjectMap: It is a termmap (set of rules that generate an RDF term) used to generate
the subjects of the RDF triples. Within it, rml:class is used to create a rdf:type triple
for that subject. The relationship with the input source can be defined by rml:template,
rml:reference, or rml:constant.

4. rml:predicateObjectMap: Defines the predicate and object of the generated triples, it
is split into rml:predicateMap & rml:objectMap, which are also term maps. Within
these term maps, it can be defined as a constant value (rml:constant), a reference to

5https://github.com/oeg-upm/owl2yarrrml

https://github.com/oeg-upm/owl2yarrrml

the column, record, element, etc. from the source (rml:reference), and a template
value (rml:template). To describe a join between sources, it is possible to replace
rml:objectMap by rml:refObjectMap. Within it, rml:parentTriplesMap specifies the
subjects to be used in the object that will be generated under a set of conditions specified
by rml:joinCondition.

The correspondences between the ontological terms and the elements of the RML mappings
for generating triples are the following: a class from an OWL ontology corresponds to a
TriplesMap that contains a SubjectMap with rr:class indicating its type. A data property
corresponds to a PredicateObjectMap within a TriplesMap that generates the triples that have
the domain of the property as a subject. An object property from OWL corresponds to a join
PredicateObjectMap in the TriplesMap that generates the triples that have the domain of the
property as a subject, and where the ParentTriplesMap is the TriplesMap corresponding to the
range of the property.

4. Propagating Ontology Changes over Mapping Rules

The following section explains the approach followed for the definition of the change operations
and the impact of those changes on the mapping rules used for constructing the knowledge
graph. We describe in detail how each change operation performed over the ontology impacts
them.

Among the different tools that exist in the literature on the evolution of an ontology, there
is COnto-Diff [8], a tool that compares two versions of an ontology and detects and extracts
a set of basic change operations that have occurred between the two versions. Then, using
a rule-based approach, the tool can detect more complex change operations. A limitation,
however, is that the change operations are not one-to-one compatible with the RDF(S) and OWL
syntax. There is the need to have separate operations for object-type properties and data-type
properties, to have a renameTerm operation that is more specific for the changes than the more
abstract map(c1,c2) and the substitute(c1,c2) operations. For OCP2KG the operations without
an influence on the mappings can be ignored, e.g. those related to annotation properties. Other
operations have been added, such as the SubClass related ones, the rename term operation, and
the property operations have been split into datatype and object type properties. With this in
mind, COnto-Diff tool has not actually been used but its change operations. It has have been
inspiration alongside the work from [9], that has been extended. A complete list of the change
operations can be found in Table 1.

AddClass(C): When a new class C is added to an ontology the main effect it has on the
mappings is the addition of a new rml:TriplesMap. It requires a rml:logicalSource with
its mandatory properties to comply with the RML specification: rml:source, rml:iterator,
and rml:referenceFormulation. In the rml:SubjectMap, the added class C will be spec-
ified in the rml:class property, and a rml:template is also added. This operation re-
quires a knowledge engineer to define the relationship with the input source for the
rml:logicalSource and the rml:SubjectMap template.

RemoveClass(C): When a class C is removed from an ontology, there are two different
situations that lead to different changes. On the one hand, if the class is not involved in any
rdfs:subClassOf relationship, then all rml:TriplesMap(s) that instantiate entities of class C
are removed. Also, all predicate object maps where their reference object map includes one of
the removed rml:TriplesMap in rml:parentTriplesMap are deleted as well.

On the other hand, if C is either subject, or object, of a subClassOf property it does a
CONSTRUCT query that returns a graph made of the triples that will be deleted from the
mappings that will be output as a separate file. Then it removes the rml:class triple from the
rml:TriplesMap, then all rml:TriplesMap(s) that instantiate entities of class C are removed.
Also, all predicate object maps where their reference object map includes one of the removed
rml:TriplesMap in rml:parentTriplesMap are deleted as well. This is done to avoid losing
the instantiation of the entities and that the user can review those triples.

RenameTerm(T): The rename operation could be understood as a combination of deletion and
the addition of a class or property T. However, in this approach, it is considered an independent
operation. It describes an operation in which a term T (class or property) is renamed so that it
has a different URI (e.g., epo:Contract evolves to epo:Document in ePO v4.0.0).

AddSubClass(C,D): The operation refers to the addition of the rdfs:subClassOf property
between classes C andD. Theway this changes themappings is by affecting the rml:subjectMap
of the rml:TriplesMap(s) where C is instantiated. The child class C is also an instance of the
parent class D; for this to be represented, it would need to add to the subject map of child C an
additional rml:class property with the object being the parent class. The child C would also
inherit the properties of parent class D, and thus the rml:predicateObjectMap of the parent
class are also added.

RemoveSubClass(C,D): The operation refers to the removal of the rdfs:subClassOf
property between classes C and D. When removing the property between two classes C
and D, the rml:class from the parent class D that is present in the rml:subjectMap
of the rml:TriplesMap that generate instances of the child class C is removed. The
rml:predicateObjectMaps where the value of the predicate has as the domain the class D
class are removed.

AddObjectProperty(C1,P,C2): Adding an object property is defining a property in the ontol-
ogy and defining domain C1 and range C2 for it, where the range is a class of the ontology. The
changes in the mappings that come from this are the addition of a rml:predicateObjectMap
in the rml:TriplesMap that has the instance of the class C in the subject map as an rml:class
with P as a rml:predicate. Being an object type property, the object of the triple is stated as
a reference object map, composed of a rml:parentTriplesMap and a rml:joinCondition. It
requires knowledge engineer intervention to define the join conditions.

RemoveObjectProperty(C1,P,C2): Removing an object property P, with domain C1, and
range C2 results in the corresponding rml:predicateObjectMaps with P as rml:predicate

Table 1
Change operations, effect on mappings, the required knowledge engineer intervention, and if it was
present in [9]

Operations Changes
KE

Intervention
From

OWL change

AddClass(C) Adds TriplesMap YES NO
RemoveClass(C) Removes TriplesMap and POM NO NO
RenameTerm(T) Replaces URI NO NO
AddSubClass(C,D) Adds Class to child & POM NO NO
RemoveSubClass(C,D) Removes Class from child & POM NO NO
AddObjectProperty(C1,P,C2) Adds POM YES YES
RemoveObjectProperty(C1,P,C2) Removes POM NO YES
AddDataProperty(C,P) Adds POM YES YES
RemoveDataProperty(C,P) Removes POM NO YES
AddSubProperty(P,Q) Adds rml:predicate NO YES
RemoveSubProperty(P,Q) Removes rml:predicate NO YES
DeprecateTerm(T) Removes instances of term NO NO
RevokeDeprecate(T) Puts back instances of term NO NO

from rml:TriplesMap that has C on the rml:subjectMap as rml:class being removed.

AddDataProperty(C,P): Adding a data property is to define a property in the ontology and
define the domain and range for it. where the range is a literal value. The changes in the map-
pings that come from this are the addition of a rml:predicateObjectMap to rml:TriplesMap
that has C in the rml:subjectMap as rml:class with P as rml:predicate. Being a data
type property, the object of the triple is recommended as a rml:reference, but it could be an
rml:constant, or a rml:template. It requires human intervention to define the relation-
ship with the input source.

RemoveDataProperty(C,P): Removing a data property P, with a domain C, results in the cor-
responding rml:propertyObjectMap with P as a rml:property from the rml:TriplesMap
that has C on the rml:subjectMap as and object of the rml:class property being removed.

AddSubProperty(P,Q): The AddSubProperty operation consists on the addition of the
rdfs:subPropertyOf relation between two properties P and Q. The way this affects the map-
pings is by adding another rml:predicate with the super-property Q as an object within those
POMs that contain P as rml:predicate.

RemoveSubProperty(P,Q): The RemoveSubProperty operation consists on the removal of
the rdfs:subPropertyOf relation between two properties P and Q. The way this affects the
mappings is by removing the rml:predicate with the super-property Q as object in those
rml:predicateObjectMap that contain P as rml:predicate.

Figure 2: Diagram of the OCP2KG tool, its steps, inputs, and outputs.

DeprecateTerm(T): Deprecation in software engineering refers to functionality that still
exists in software whose use is not recommended. Since it has not yet been removed, it
must be kept within the ontology (with the corresponding annotation property). If an onto-
logical term is deprecated, those parts of the mappings must be taken into a different docu-
ment of the deprecated terms. In the case of a class T, the rml:TriplesMap it corresponds
to those rml:PredicateObjectMap where it is present, and the corresponding joins must
be removed from the mappings and placed in a deprecated document. For properties, the
rml:predicateObjectMap corresponding to them must be moved to the document describing
the term deprecated. It functions in a similar fashion to the RemoveClass and RemoveProperty
operations, but instead of erasing, they are erased and added to a new file.

RevokeDeprecate(T): The inverse operation of the DeprecateTerm(T) operation consists of
removing the instances of that ontological term T from the deprecate terms document and
placing them back into the mappings file.

5. OCP2KG: Ontology Changes Propagation to KG

In this section, we present OCP2KG6, the design and implementation of our approach. We
describe all input and output using RDF data, and all operations within the graphs stored in the
program are done via SPARQL queries, so it is implemented in a fully declarative pipeline.

The ontology followed for the representation of changes in RDF data is an extension of
the OWL change ontology presented in [9]. Our proposal, which is publicly available, aims
to make this ontology more general and suitable for our work. In detail, we add several
classes to the ontology to represent our desired changes, which are: a generic addClass for the
classes without specifying if they are disjoint or not, a RemoveClass operation, the RenameClass,
and RenameProperty classes, the SubclassChange class, and its children, AddSubClass, and
RemoveSubClass.7

6https://github.com/oeg-upm/ocp2kg
7https://https://w3id.org/OWLChangeOntolog

https://github.com/oeg-upm/ocp2kg
https://https://w3id.org/OWLChangeOntolog

PREFIX epo: <http://data.europa.eu/a4g/ontology#>
PREFIX omv: <http://omv.ontoware.org/2009/09/OWLChanges#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX epo-change: <http://epo-changes.org/1.0-1.1/RemoveClasslass/>

epo-change:AwardDecision rdf:type omv:RemoveClass.
epo-change:AwardDecision omv:deletedClass epo:AwardDecision.

Listing 1: Example Of Class Removal in the e-Procurement Ontology

First, the changes are defined as RDF data, and a URI is assigned to each of the changes. Each
change must be instantiated as a type of change, and then the parameters of that operation
must be indicated by using the properties of the class. This set of changes is used as input
for OCP2KG. The new version of the ontology should also be provided so that the tool can
consult additional information such as rdfs:subClassOf relations when needed. The outdated
mappings also have to be provided so that they serve as a template for the new ones. The output
is the updated mappings that have been changed according to the change propagation defined
in Section 4. A complete overview of the workflow implemented in OCP2KG is provided in
Figure 2. We provide a detailed description of all steps implemented in the pipeline along with
a set of representative examples.

The input change RDF data represents the different changes between two consecutive versions
of the ontology, being modeled by the OWL change ontology extension. Each change is an
entity that specifies the kind of change through its class. Then there is a triple with each of
the ontological terms involved in that particular change operation. Each operation has its own
properties defined for that, for instance: och:addedClass for the class being added in the addClass
operation. A design decision that has been made for simplicity sake is that any operations
that modify elements of a property or class is the same as a Remove and Add operation, it
may not be efficient, but for an early approach is simple and manageable. For instance if a
predicateObjectMap has multiple object maps for the same property and that property was to
be changed, then the predicateObjectMap would be removed and then added again with the
updated values. We present a small example in Listing 1 that represents the removal of a class
in the ePO.

OCP2KG first loads the change data, outdated mappings, the current version of the ontology
as separate graphs. Then, for each operation, the engine applies those changes to the mappings
graph with SPARQL queries. These SPARQL queries are provided to OCP2KG as a set of
predefined templates, one per operation. Said templates take into account the different ways
that RML mappings can be described, taking into account constant predicates and objects, for
instance. The variables of each SPARQL query are then substituted by the actual values of the
changes. Regarding the implementation of changes that add or remove ontological terms from
the ontology, the following conventions have been followed. First, for those operations that do
not require any knowledge engineer intervention, the operation is performed automatically on
the graph that will be returned as output and no special treatment is given. An example of this
can be seen in Listing 2 for the RemoveObjectProperty operation.

In operations where ontological terms are added, the relationship of the term with the input

DELETE WHERE {
?tm rml:predicateObjectMap ?pom.
?pom rml:predicate %REMOVED_PROPERTY% .
?pom rml:objectMap ?object.
?object rml:parentTriplesMap ?parent_tm
?object rml:joinCondition ?join_condition .
?join_condition ?conditions ?object_conditions .

}

Listing 2: Remove Object Property query

PREFIX rml: <http://www.w3.org/ns/r2rml#>
PREFIX rml: <http://w3id.org/rml#>
PREFIX epo: <http://data.europa.eu/a4g/ontology#>
INSERT DATA {

%TM_class_ID% a rml:TriplesMap;
rml:logicalSource [

rml:source "XXXX";
rml:referenceFormulation "XXXX"];

rml:subjectMap [
rml:template "XXXX";
rml:class %CLASS%].

}

Listing 3: Add class query

source must be established by the knowledge engineer, as it still cannot be obtained automat-
ically. This happens in operations where a rml:subjectMap or a rml:predicateObjectMap
is being added and the relationship with the source must be asserted via a rml:reference or
rml:template property, or when creating a new rml:TriplesMap a rml:LogicalSource must
be stated with a rml:logicalSource, and a rml:referenceFormulation. For this situation
we are using a token made of four X’s to indicate that it is a value that has to be replaced by the
knowledge engineer. An example of this can be seen in Listing 3.

Another instance where an engineer intervention being required is when there is doubt as to
whether something should be deleted. This happens, for instance, when deleting a class, since if
it has a super class then those instances where it appears in the mappings could be substituted
by the super class. However, this cannot be done automatically and requires intervention. The
way we have handled this is so that it removes those triples from the graph and inserts them
into another graph for the engineer to review. This example can be seen in Listing 4.

Subclass and superclass relationships are not needed to be explicitly stated in the RML
mappings, those can be inferred by the RDF engine, that have different ways of handling it. For
the tool the authors have materialized the inferred triples from the sub-super class relationships
to avoid time-consuming inference at query time.

PREFIX rml: <http://www.w3.org/ns/r2rml#>
PREFIX epo: <http://data.europa.eu/a4g/ontology#>
DELETE WHERE{

?triplesmap rml:subjectMap ?subject.
?subject rml:class %REMOVED_CLASS%.
?triplesmap rml:predicateObjectMap ?pom.
?pom rml:predicate ?predicate.
?pom rml:object ?object.

OPTIONAL{
?parent_tm rml:predicateObjectMap ?parent_pom.
?parent_pom rml:predicate ?parent_predicate .
?parent_pom rml:objectMap ?parent_object.
?parent_object rml:parentTriplesMap ?triplesmap.
?parent_object rml:joinCondition ?join_condition .
?join_condition ?conditions ?object_conditions

}}

Listing 4: Remove class query.

6. Case Study: The EU Public Procurement Data Space

In this section, we describe the experiment of propagating the changes from a change RDF data
file into an outdated version of the mappings from the e-Procurement ontology use case. We
describe the steps followed, the expected results from the experiment. The code and data are
openly available8. The mappings we are using are those from the v3.0.0 version of the ontology
version, which we will update with the v3.0.1 ontology and its corresponding change log. This
comes from the need to be automatically able to update the mappings to conform to the newer
versions of the ontology. Currently, the e-Procurement ontology is in its version 4.0.2, whereas
the most up-to-date PPDS mappings are from the 3.0.0 version and have not been updated since.

First, there is the input change data, which comes from the 3.0.0-3.0.1 change log9, it contains
changes for a section of the mappings corresponding to the tedm:SubmissionTerm and the
tedm:Organization rml:TriplesMap. The list of operations is shown in Table 2.

The following are the mappings for the evaluation. Since the ontology is quite large,
this is a representative portion of the total mappings and comprises rml:TriplesMap of
tedm:SubmissionTerm and the tedm:Organization, containing the necessary components of
the mappings to perform the operations of Table 2.

In the resulting mappings from the execution of the tool, we get updated mappings where
the operations described in Table 2 have taken effect. As expected, the AddClass operation has
resulted in the addition of five lines that create a rml:TriplesMap, its rml:logicalSource, and
its rml:subjectMap with the token values. The AddSubClass operation results in one line being
added within the Submission term rml:subjectMap, adding the super class. The AddObjectProp-

8https://github.com/oeg-dataintegration/ocp2kg
9https://docs.ted.europa.eu/EPO/3.0.1/release-notes.html

https://github.com/oeg-dataintegration/ocp2kg
https://docs.ted.europa.eu/EPO/3.0.1/release-notes.html

mappings:
 ProcedureSpecificTerm:
 sources:
 - ['data.xml~xpath', /[..]/PROCEDURE]
 s:
 - function:submissionTerm_subject(XPATH_EXPR)
 po:
 - [rdf:type, [epo:ProcedureSpecificTerm, epo:SubmissionTerm]]
 Organisation:
 sources:
 - ['data.xml~xpath',/[..]/ADDRESS_CONTRACTING_BODY]
 s:
 - function:organization_subject(XPATH_EXPR)
 po:
 - [rdf:type, org:Organization]
 - [epo:hasBuyerLegalTypeDescription, $(XX)]
 - [epo:hasMainActivity, $(XXXX)]
 - [m8g:egisteredAddress, $(REGADID)]
 - [epo:hasLegalName, $(OFFICIALNAME)]
 - p: epo:hasID
 o:
 - function: join(OrganisationIdentifier, equal($(NATIONALID),$(.)))
 ConcessionEstimate:
 sources:
 - [XXXX~xxxx]
 s: $(XXXX)
 po:
 - [rdf:type, epo:ConcessionEstimate]

mappings:
 SubmissionTerm:
 sources:
 - ['data.xml~xpath', /[..]/PROCEDURE]
 s:
 - function: submissionTerm_subject(XPATH_EXPR)
 po:
 - [rdf:type, epo:SubmissionTerm]
 Organisation:
 sources:
 - ['data.xml~xpath', /[..]/ADDRESS_CONTRACTING_BODY]
 s:
 - function: organization_subject(XPATH_EXPR)
 po:
 - [rdf:type, org:Organization]
 - [epo:hasLegalName, $(OFFICIALNAME)]
 - [m8g:registeredAddress, $(REGADDID)]
 - p: epo:hasID
 o:
 - function: join(OrganisationIdentifier, equal($(NATIONALID),$(.)))

Figure 3: Excerpt of the automatic evolution from v3.0.0 to v3.0.1 of the PPDS mapping rules.

Table 2
Operations performed in evaluation

Operations Parameters

AddClass epo:ConcessionEstimate
AddSubClass epo:SubmissionTerm,epo:ProcedureSpecificTerm
AddObjectProperty org:Organization,epo:hasMainActivity,at-voc:main-activity
RemoveObjectProperty org:Organization,epo:hasMainActivityType,at-voc:main-activity
AddDataProperty org:Organization,epo:hasBuyerLegalTypeDescription
RemoveDataProperty org:Organization,epo:hasBuyerTypeDescription

erty operation results in the addition of two lines that form the rml: predicateObjectMap,
and the RemoveObjectProperty operation does not have an effect since that property is not
present in the outdated mappings, and therefore nothing had to be removed. The AddDataProp-
erty operation results in the addition of two lines, adding its rml:predicateObjectMap to the
mappings. The RemoveDataProperty has no effect, since that property has no presence in the
outdated mappings, and thus nothing had to be removed. In Table 3 we can see the differences
between the old mappings and the updated mappings. In the table, we compare the number
of rml:TriplesMap, rml:logicalSource, rml:subjectMap, & rml:predicateObjectMap to
check whether the change operations are taking effect as intended.

As limitations, our approach is not fully automatized, as it still requires the intervention of a
knowledge engineer to define the relationship between the new terms of the ontology and the
data to be transformed into RDF data [27]. Much work has to go into ontology engineering
practices to have a more extensive list of change operations that contemplate different ways to
define classes, properties, and restrictions and create queries that contemplate those cases.

Table 3
Differences in input mappings, and output mappings, in terms of the amount of rml:TriplesMap

Old Updated

Number of lines 58 40
#TriplesMap 2 3
#LogicalSource 2 3
#SubjectMap 2 3
#PredicateObjectMap 3 5

7. Conclusions and Future Work

In this paper, we present an approach that enables propagating ontology evolution in the
construction of the knowledge graph. For the first time, knowledge evolution is considered
as a parameter in this process, analyzing its impact on the mapping rules, while providing a
semi-automatic tool for updating RML mappings with ontology changes. As seen in section
6 the tool correctly propagates changes to the RML, requiring minimal knowledge engineer
intervention, mainly just define the relationship between the input data and the classes and
properties being added. We implement a fully declarative pipeline as a proof of concept of the
contribution, namely OCP2KG, and test it on a real use case in the public procurement domain.

The main limitation of the work is that full automation has not been achieved, as the tool
still requires KE intervention for new knowledge being added. Since this is an early work the
tool only takes into account major ontology changes, not fully contemplating the expressivity
of both OWL and RML.

For future work, we will perform an experimental study to understand the benefits of our
contribution w.r.t. the current approach. We want to study the impact on the execution time and
memory consumption of KG construction engines dealing with ontology changes in a control
environment or benchmark [28], and the effects it can have usage on different mapping engines.
Work has to go to defining an order and priority for the change operations since some changes
can neutralize each other and some changes require other changes to take place before. For
example: AddClass(C) has to take place before AddSubClass(C,D) can be executed. Additionally,
we will extend our approach to include not only the mapping rules used to construct the
knowledge graph but other associated assets such as shapes for the validation or queries for the
exploitation.

Acknowledgements

David Chaves-Fraga is funded by the GalicianMinistry of Education, University and Professional
Training and the European Regional Development Fund (ERDF/FEDER program) through grants
ED431C2018/29 and ED431G2019/04. María Poveda-Villalón is funded by the European Union’s
Horizon 2020 research and innovation programme under the grant agreement no. 101016854
(AURORAL). Diego Conde-Herreros is supported by the project Knowledge Spaces (Grant
PID2020-118274RB-I00 funded by MCIN/AEI/10.13039/50110 0011033) & by Spanish Statistical
Office (INE).

References

[1] C. Sundara, S. Das, R. Cyganiak, R2RML: RDB to RDF Mapping Language, W3C Recom-
mendation, W3C, 2012. Http://www.w3.org/TR/2012/REC-r2rml-20120927/.

[2] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van deWalle, RML: A
generic language for integrated RDF mappings of heterogeneous data., Ldow 1184 (2014).

[3] A. Iglesias-Molina, D. Van Assche, J. Arenas-Guerrero, B. De Meester, C. Debruyne, S. Joza-
shoori, P. Maria, F. Michel, D. Chaves-Fraga, A. Dimou, The RML Ontology: A Community-
Driven Modular Redesign After a Decade of Experience in Mapping Heterogeneous Data
to RDF, in: International Semantic Web Conference, Springer, 2023, pp. 152–175.

[4] E. Daga, L. Asprino, P. Mulholland, A. Gangemi, et al., Facade-X: an opinionated approach
to SPARQL anything, Studies on the Semantic Web 53 (2021) 58–73.

[5] M. Lenzerini, Data integration: A theoretical perspective, in: Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2002,
pp. 233–246. doi:10.1145/543613.543644.

[6] N. F. Noy, M. Klein, Ontology evolution: Not the same as schema evolution, Knowledge
and information systems 6 (2004) 428–440.

[7] A. Polleres, R. Pernisch, A. Bonifati, D. Dell’Aglio, D. Dobriy, S. Dumbrava, L. Etcheverry,
N. Ferranti, K. Hose, E. Jiménez-Ruiz, et al., How does knowledge evolve in open knowledge
graphs?, Transactions on Graph Data and Knowledge 1 (2023) 11–1.

[8] M. Hartung, A. Groß, E. Rahm, COnto–Diff: generation of complex evolution mappings
for life science ontologies, Journal of biomedical informatics 46 (2013) 15–32.

[9] R. Palma, P. Haase, Ó. Corcho, A. Gómez-Pérez, Change Representation For OWL 2
Ontologies, in: R. Hoekstra, P. F. Patel-Schneider (Eds.), Proceedings of the 5th International
Workshop on OWL: Experiences and Directions (OWLED 2009), Chantilly, VA, United
States, October 23-24, 2009, volume 529 of CEUR Workshop Proceedings, CEUR-WS.org,
2009. URL: https://ceur-ws.org/Vol-529/owled2009_submission_14.pdf.

[10] F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris, H. Kondylakis, E. Motta, D. Plexousakis,
M. Sabou, Ontology evolution: a process-centric survey, The knowledge engineering
review 30 (2015) 45–75.

[11] D. Lembo, R. Rosati, V. Santarelli, D. F. Savo, E. Thorstensen, Mapping repair in ontology-
based data access evolving systems, in: IJCAI International Joint Conference on Artificial
Intelligence, International Joint Conference on Artificial Intelligence, 2017, pp. 1160–1166.
doi:10.24963/ijcai.2017/161.

[12] R. Pernisch, M. Poveda-Villalón, D. Conde-Herreros, D. Chaves-Fraga, L. Stork, When
ontologies met knowledge graphs: Tale of a methodology (2024).

[13] L. Stojanovic, Methods and tools for ontology evolution, Ph.D. thesis, Karlsruhe Insti-
tute of Technology, Germany, 2004. URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000003270.

[14] L. Stojanovic, A. Maedche, B. Motik, N. Stojanovic, User-driven ontology evolution
management, in: Knowledge Engineering and Knowledge Management: Ontologies and
the Semantic Web: 13th International Conference, EKAW 2002 Sigüenza, Spain, October
1–4, 2002 Proceedings 13, Springer, 2002, pp. 285–300.

[15] H. Wardhana, A. Ashari, Review of ontology evolution process, International Journal of

http://dx.doi.org/10.1145/543613.543644
https://ceur-ws.org/Vol-529/owled2009_submission_14.pdf
http://dx.doi.org/10.24963/ijcai.2017/161
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003270
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003270

Computer Applications 45 (2018) 26–33.
[16] M. Javed, Y. M. Abgaz, C. Pahl, Ontology change management and identification of change

patterns, Journal on Data Semantics 2 (2013) 119–143.
[17] A. M. Khattak, K. Latif, S. Lee, Change management in evolving web ontologies, Knowl.

Based Syst. 37 (2013) 1–18. doi:10.1016/J.KNOSYS.2012.05.005.
[18] K. Davies, C. M. Keet, A. Lawrynowicz, More Effective Ontology Authoring with

Test-Driven Development and the TDDonto2 Tool, Int. J. Artif. Intell. Tools 28 (2019)
1950023:1–1950023:25. doi:10.1142/S0218213019500234.

[19] S. D. Benavides, S. D. Cardoso, M. D. Silveira, C. Pruski, Analysis and implementation of
the DynDiff tool when comparing versions of ontology, J. Biomed. Semant. 14 (2023) 15.
doi:10.1186/S13326-023-00295-7.

[20] M. Tury, M. Bieliková, An approach to detection ontology changes, in: Workshop Proceed-
ings of the Sixth International Conference on Web Engineering, ICWE ’06, Association for
Computing Machinery, 2006. doi:10.1145/1149993.1150009.

[21] L. F. de Medeiros, F. Priyatna, O. Corcho, MIRROR: Automatic R2RML mapping generation
from relational databases, in: Engineering the Web in the Big Data Era: 15th International
Conference, ICWE 2015, Rotterdam, The Netherlands, June 23-26, 2015, Proceedings 15,
Springer, 2015, pp. 326–343.

[22] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel, M. G. Skjæveland,
E. Thorstensen, J. Mora, BootOX: Practical mapping of RDBs to OWL 2, in: The Semantic
Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part II 14, Springer, 2015, pp. 113–132.

[23] M. A. Hazber, R. Li, G. Xu, K. M. Alalayah, An approach for automatically generating
R2RML-based direct mapping from relational databases, in: Social Computing: Second
International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE
2016, Harbin, China, August 20-22, 2016, Proceedings, Part I 2, Springer, 2016, pp. 151–169.

[24] Á. Sicilia, G. Nemirovski, AutoMap4OBDA: Automated generation of R2RML mappings
for OBDA, in: Knowledge Engineering and Knowledge Management: 20th International
Conference, EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings 20, Springer,
2016, pp. 577–592.

[25] D. Chaves-Fraga, O. Corcho, F. Yedro, R. Moreno, J. Olías, A. De La Azuela, Systematic
construction of knowledge graphs for research-performing organizations, Information 13
(2022) 562.

[26] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann, E. Mannens, S. Hell-
mann, R. Van de Walle, Assessing and refining mappings to rdf to improve dataset quality,
in: The Semantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethle-
hem, PA, USA, October 11-15, 2015, Proceedings, Part II 14, Springer, 2015, pp. 133–149.

[27] A. Dimou, D. Chaves-Fraga, Declarative description of knowledge graphs construction
automation: Status & challenges, in: Proceedings of the 3rd International Workshop on
Knowledge Graph Construction (KGCW 2022) co-located with 19th Extended Semantic
Web Conference (ESWC 2022), volume 3141, 2022.

[28] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho, GTFS-
Madrid-Bench: A benchmark for virtual knowledge graph access in the transport domain,
Journal of Web Semantics 65 (2020) 100596.

http://dx.doi.org/10.1016/J.KNOSYS.2012.05.005
http://dx.doi.org/10.1142/S0218213019500234
http://dx.doi.org/10.1186/S13326-023-00295-7
http://dx.doi.org/10.1145/1149993.1150009

	1 Introduction
	2 Motivating example
	3 Background & Related Work
	3.1 Related Work
	3.2 Background: The RDF Mapping Language

	4 Propagating Ontology Changes over Mapping Rules
	5 OCP2KG: Ontology Changes Propagation to KG
	6 Case Study: The EU Public Procurement Data Space
	7 Conclusions and Future Work

