
Human-Friendly RDF Graph Construction:
Which one do you chose?

Ana Iglesias-Molina1, David Chaves-Fraga1,2,
Ioannis Dasoulas2, and Anastasia Dimou2

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{ana.iglesiasm,david.chaves}@upm.es

2 KULeuven – Flanders Make@KULeuven – Leuven.AI, Belgium
{ioannis.dasoulas,anastasia.dimou}@kuleuven.be

Abstract. Knowledge Graphs (KGs) are a powerful mechanism to struc-
ture and organize data on the Web. RDF KGs are usually constructed
by declaring a set of mapping rules, specified according to the gram-
mar of a mapping language (e.g., RML), that relates the input data
sources to a domain vocabulary. However, the verbosity and (manual)
definition of these rules affect their global adoption. Several user-friendly
serializations for different mapping languages were proposed to facilitate
users with the definition of such rules, e.g., YARRRML, SMS2, XRM,
or ShExML. Still, most of them do not cover all features of the mapping
languages for RDF graph construction (e.g., constructing RDF-star), or
they lack tooling support. In this paper, (i) we present a set of updates
over the YARRRML serialisation to empower it with the latest necessi-
ties for constructing RDF graphs; (ii) we implement these new features
in a new open-source translator, Yatter, currently used in different real-
use cases and international projects; and (iii) we qualitatively compare
our proposal against similar state-of-the-art serialisations, and their as-
sociated translators over a set of conformance test cases. Our proposal
advances the declarative construction of RDF graphs and supports users
in choosing an appropriate serialisation and translator for their use cases.

Keywords: Knowledge Graphs · Mapping Languages · YARRRML.

1 Introduction

Knowledge graphs have proven to be a powerful technology for integrating and
accessing myriads of data available on the Web. Using mapping languages guar-
antees sustainable construction of RDF graphs based on a set of declarative
mapping rules [18], specified according to a mapping language’s grammar (e.g.,
R2RML [8] and RML [10]), which relates data sources to a domain vocabulary.

Several mapping languages were proposed to construct RDF graphs [18].
W3C recommends the Relational to RDF Mapping Language (R2RML) [8])
to construct RDF from Relational Databases. R2RML is a custom mapping
language based on the RDF syntax. Multiple works extend R2RML [18] (e.g.,

2 Iglesias-Molina et al.

RML [10]) enabling its use for heterogeneous data sources. Despite efforts to con-
ceptualize and describe these mapping languages, their manual creation process,
verbosity, and complexity lead to the appearance of user-friendly serializations.

Human-friendly serialisations emerged to ease the definition of mapping rules.
YARRRML [13] leverages YAML to offer a user-friendly representation to define
mapping rules, while ShExML [11] extends the syntax of the ShEx constraint
language [15]. XRM [21] provides an abstract syntax that simulates program-
ming languages and SMS2 [17], proposed by Stardog3, is loosely based on the
SPARQL query language and extends the features of R2RML to create virtual
RDF graphs. Each serialisation is accompanied by a system that translates their
rules into mapping languages, such as RML or R2RML (henceforth abbreviated
as [R2]RML). However, these serialisations and translators were not compared
with each other in terms of serialisations’ features and system’s characteristics,
even though it would help to decide which serialisation fits each use case.

In this paper, we propose YARRRML-star, by extending YARRRML to also
support RML-star [9] to construct RDF-star graphs, and improve YARRRML to
adhere with the latest RML updates (e.g., datatypes, joins, etc.). We developed
a translator system that implements the new features, validated our proposal
with test cases and compared it to other user-friendly serializations.

The contributions of this paper are: (i) the YARRRML-star4, an extension
of the YARRRML serialisation to fully cover RML and support for RML-star;
(ii) Yatter5, a new YARRRML system that implements the translation of the
new features; (iii) a qualitative comparison of human-friendly mapping languages
with respect to their expressiveness; (iv) conformance test cases6 for YARRRML
adapted from [R2]RML test-cases and translated to other serializations; and (v)
a comparison of language conformance and other features (e.g., open vs. close
source code) of the associated translators.

The remaining paper is structured as follows: Section 2 describes related
work, and, Section 3, a set of relevant concepts to understand the rest of the
paper. Section 4 describes the extension over the YARRRML serialization. Sec-
tion 5 presents the implementation of these advances in a new translator, Yatter.
Section 6 validates our proposals and their position compared to previous works
and Section 7 outlines our conclusions and future work.

2 Related Work

Different serialisations were proposed so far to offer a user-friendly experience
for constructing RDF graphs. Each serialisation is accompanied with a system
to translate the mapping rules to RML or directly construct the RDF graph.

YARRRML [13] is a compact serialisation for RML and R2RML mapping
rules based on YAML7 and is currently used in several projects over different

3 https://www.stardog.com/
4 https://oeg-dataintegration.github.io/yarrrml-spec/
5 https://github.com/oeg-upm/yatter/
6 https://github.com/oeg-upm/yarrrml-validation
7 https://yaml.org/

Human-Friendly RDF Graph Construction: Which one do you chose? 3

domains [2, 4, 16]. Companies also incorporate YARRRML into their processes,
e.g., the Google Enterprise Knowledge Graph where YARRRML is used to con-
struct and reconcile an external RDF graph8. However, YARRRML is currently
outdated with respect to latest developments of RML (e.g., RML-star [9]).

ShExML [11] is a mapping language for heterogeneous data sources based
on Shape Expressions (ShEx) [15]. Its syntax combines declarations to handle
data sources with a set of shapes that define how they should be mapped. The
language’s operators and support of Scala functions offer multiple possibilities
for data transformation. ShExML mapping rules can be translated into RML or
directly used to construct RDF graphs with the ShExML Java library9.

The Expressive RDF Mapper [21] (XRM) by Zazuko10 offers an abstract
syntax for mapping rules aiming to resemble programming languages. XRM’s
system translates the mappings to [R2]RML, CARML11 or CSVW12, and pro-
vides code-assistance and syntax validation.

Another well-known human-friendly serialization is the Stardog Mapping
Syntax 2 [17] (SMS2) supporting both structured and semi-structured data
sources. SMS2 is loosely based on SPARQL CONSTRUCT queries. It follows a
FROM - TO syntax, where the FROM part resembling the data source it refers
to, and the TO part resembling the RDF syntax that defines how the output
will be generated. This serialisation can be used to directly create RDF graphs.

3 Background

As we propose YARRRML-star extending YARRRML to also support RML-
star, in this section we describe the basics of the YARRRML serialisation and
how it translates to RML. To this end, we present an example in YARRRML
(List 1) and its corresponding translation to RML (List 2). The YARRRML
mapping rules (List 1) are grouped in sets unified under a mapping identifier,
given below the mappings key (lines 1-2,18). Each rule set describes how to
access the input data sources and how the triples will be constructed from these
data sources. The input data sources’ description is specified below the sources
key (lines 4-5,19-20). Within, the name, path and format of the file are specified.

The graphs key assigns a named graph to the triples (line 3). The subjects
key defines the IRI or Blank Node of the subjects to be generated (lines 6,
21), and the predicateobjects key is used for the predicate-object pairs (lines
7-16,22-24). The predicates (line 9) and objects (line 10) keys define how
predicate IRIs and object terms (IRIs, Blank Nodes or Literals) are generated.

8 https://cloud.google.com/enterprise-knowledge-graph/docs/

entity-reconciliation-console
9 https://github.com/herminiogg/ShExML

10 https://zazuko.com
11 https://github.com/carml/carml
12 https://www.w3.org/ns/csvw

4 Iglesias-Molina et al.

1 mappings:

2 personTM:

3 graphs: :pole-vaulters

4 sources:

5 - [jump.csv~csv]

6 subjects: :$(ID)
7 predicateobjects:

8 - [:name, $(PERSON), en~lang]

9 - predicates: :jumps

10 objects:

11 - mapping: jumpTM

12 condition:

13 function: equal

14 parameters:

15 - [str1, $(ID)]
16 - [str2, $(ID)]
17
18 jumpTM:

19 sources:

20 - [jump.csv~csv]

21 subjects: :$(ID)-$(MARK)
22 predicateobjects:

23 - [:date, $(DATE)]
24 - [:mark, $(MARK), xsd:float]

Listing 1: YARRRML mapping rules.

1 <#personTM>

2 a rr:TriplesMap ;

3 rml:logicalSource [

4 rml:source "jump.csv" ;

5 rml:referenceFormulation ql:CSV

6] ;

7 rml:subjectMap [

8 rr:template ":{ID}"] ;

9 rr:graphMap [

10 rr:constant :pole-vaulters];

11 rr:predicateObjectMap [

12 rr:predicate :name ;

13 rml:objectMap [

14 rml:reference "PERSON";

15 rr:language "en"]] ;

16 rr:predicateObjectMap [

17 rr:predicate :jumps;

18 rr:objectMap [

19 rr:parentTriplesMap <#jumpTM>;

20 rr:joinCondition [

21 rr:child "ID";

22 rr:parent "ID"]] .

23 <#jumpTM>

24 a rr:TriplesMap ;

25 rml:logicalSource [

26 rml:source "jump.csv" ;

27 rml:referenceFormulation ql:CSV

28] ;

29 rml:subjectMap [

30 rr:template ":{ID}-{MARK}"] ;

31 rr:predicateObjectMap [

32 rr:predicate :date ;

33 rml:objectMap [

34 rml:reference "DATE"]] ;

35 rr:predicateObjectMap [

36 rr:predicate :mark ;

37 rml:objectMap [

38 rml:reference "MARK";

39 rr:datatype xsd:float

40]]] .

Listing 2: RML mapping rules translated from List 1.
It is usually more common to use the abbreviated syntax, that needs none

of the keys abovementioned (line 8,23-24). Following this alternative, the first
element of the array corresponds to the predicate, the second to the object, and
optionally, the language tag (line 8) or datatype (line 24). Lastly, join conditions
may be used when the desired object is the subject of another mapping set (lines
9-16). This condition requires the name of the target mapping set (line 11), and
a similarity function, (usually equal). This function evaluates when the data
values of the source data specified (lines 15-16) are the same to create the triple.
The input parameters for this funciton that refer to the data values are str1 for
the current mapping set, and str2 for the referencing mapping set.

Subjects, predicates, objects and graphs are terms that can be generated as
constant values (i.e. the same term is always generated in all triples) or dynamic

Human-Friendly RDF Graph Construction: Which one do you chose? 5

values (i.e. the term changes with the data value, that is enclosed inside “$()”).
The YARRRML serialisation13 also includes description of target data output
(targets) [19], and application of functions14 (function).

The YARRRML features are translated to RML (List 2) as follows: map-
ping rule sets are denoted by rr:TriplesMap (lines 1-2); input data sources
with rml:LogicalSource (lines 3-6); subjects with rr:SubjectMap (lines 7-
10); named graphs with rr:graphMap (lines 9-10); predicate-object pairs with
rr:PredicateObjectMap (lines 11-22,31-40); language tags with rr:language

(line 15); datatypes with rr:datatype (line 39); joins with rr:joinCondition

(lines 16-22). Term maps can be divided in three categories: rr:constant for
constant values, rml:reference for data fields and rr:template for terms that
have a constant value and one or more data fields enclosed by “{}”.

4 Extending YARRRML

We extend the YARRRML serialisation to support the RDF-star construction
and two updates: the dynamic datatypes and language tags, and a shortcut for
join conditions. These are recent features in RML that so far were not considered
in YARRRML. To illustrate the extensions, we use a CSV file as input (List 3).

ID , PERSON , COUNTRY , MARK , DATE , DATE-TYPE

1 , Lisa Ryzih , de , 4.40 , 2022-03-21 , date

2 , Xu Huiqin , zh , 4.55 , 2022-03-19T17:23:37 , dateTime

Listing 3: Contents of the jump-source logical source.

4.1 YARRRML-star

RDF-star introduces the notion of RDF-star triples, i.e. triples that are subjects
or objects of another triple. These triples are enclosed using “<<” and “>>”, and
can be (1) quoted, if they only appear in a graph embedded by another triple
(List 4 lines 2,4); or (2) asserted, if the quoted triple is also generated outside
the triple where it is quoted (lines 1-4). We extend YARRRML to specify how
we can construct RDF-star graphs, aligned with the RML-star specification [14].

1 :1 :jumps 4.40 .

2 << :1 :jumps 4.80 >> :date "2022-03-21" .

3 :2 :jumps 4.55 .

4 << :2 :jumps 4.85 >> :date "2022-03-19T17:23:37" .

Listing 4: RDF-star triples.
RDF-star triples can be created in YARRRML-star (List 5) by referencing

existing Triples Maps with the tags (1) quoted for quoted asserted triples (line
10) and (2) quotedNonAsserted for quoted non-asserted triples. The triple that
the rule set jumpTM creates is used as subject in the rule set dateTM, creating
RDF-star triples (List 4). The equivalent mapping rules in RML are in List 6.

13 https://rml.io/yarrrml/spec/
14 https://rml.io/yarrrml/spec/#functions

6 Iglesias-Molina et al.

1 mappings:

2 jumpTM:

3 sources: jump-source

4 subjects: :$(ID)
5 predicateobjects:

6 - [:jumps, $(MARK)]

7 dateTM:

8 sources: jump-source

9 subjects:

10 quoted: jumpTM

11 predicateobjects:

12 - [:date, $(DATE)]

Listing 5: YARRRML-star mapping rules.

1 <#jumpTM>

2 a rr:TriplesMap ;

3 rml:logicalSource :jump-source;

4 rml:subjectMap [

5 rr:template ":{ID}"] ;

6 rr:predicateObjectMap [

7 rr:predicate :jumps ;

8 rml:objectMap [

9 rml:reference "MARK"]] .

10 <#dateTM>

11 a rr:TriplesMap ;

12 rml:logicalSource :jump-source ;

13 rml:subjectMap [

14 rml:quotedTriplesMap <#jumpTM>];

15 rr:predicateObjectMap [

16 rr:predicate :date ;

17 rml:objectMap [

18 rml:reference "DATE"]] .

Listing 6: RML-star mapping rules translated from List 5.

4.2 Additional updates

We enable YARRRML-star with other new features that have been incorporated
into RML in the last years. We extend YARRRML to assign datatypes and
language tags dynamically to objects. They are generated with the data values,
in the following examples the datatype is generated dynamically with the data
field DATA-TYPE (List 7), and the language tag with COUNTRY (List 8). They
translates into RML as Lists 9 and 10 show.
- [:date, $(DATE), xsd:$(DATE-TYPE)]

Listing 7: Dynamic datatype.

- [:name, $(PERSON), $(COUNTRY)~lang]

Listing 8: Dynamic language tag.

1 rr:predicateObjectMap [

2 rr:predicate :jumpsOnDate ;

3 rml:objectMap [

4 rml:reference "DATE";

5 rml:datatypeMap [

6 rr:template "xsd:{DATE-TYPE}"]]];

Listing 9: Dynamic datatype in
RML translated from List 7.

1 rr:predicateObjectMap [

2 rr:predicate :name ;

3 rml:objectMap [

4 rml:reference "PERSON";

5 rml:languageMap [

6 rml:reference "COUNTRY"]]];

Listing 10: Dynamic language tag
in RML translated from List 8.

We also incorporate a shortcut for specifying join conditions (List 11). This
shortcut follows the functions’ syntax14. It is specified as the function join

that takes as parameters the mapping identifier (with the mapping= param-
eter key) and the similarity function to perform the join. This function can,
in turn, take as parameters data values. Quoted and non-asserted triples can

Human-Friendly RDF Graph Construction: Which one do you chose? 7

also be generated within join conditions by using the parameter keys quoted=
and quotedNonAsserted= respectively. In the example, the join condition is per-
formed using the equal function to create as objects the subjects of the mapping
set jumpTM if the values of the fields ID from source and ID from target mapping
set are the same.

The YARRRML-star extension and all the additional updates were proposed
to be incorporated in the YARRRML specification and are currently under re-
view by the KG Construction Community Group15.

1 - predicates: :jumps

2 objects:

3 - function: join(mapping=jumpTM, equal(str1=$(ID), str2=$(ID)))

Listing 11: Abbreviated syntax for join conditions.

5 Yatter

Yatter [5] is a new open-source bi-directional YARRRML translator that sup-
ports the aforementioned new features. Yatter receives as input a mapping doc-
ument in the YARRRML serialisation and the desirable output format (R2RML
or RML), or the other way around. Algorithm 1 presents the procedure im-
plemented by the system to translate an input YARRRML mapping document
into [R2]RML. First, the namespaces defined in YARRRML are added together
with a set of predefined ones (e.g., foaf16, rml17, rdf18) that are used in by
[R2]RML. Second, functions, targets, and databases are identified in the entire
YARRRML document and translated into RML. Each of them generates a global
identifier mapped into a hash table that can be used by any rr:TermMap. For
external source declaration, their identifiers are also mapped into a hash table for
the next steps. Regarding the RDF-star support, the mapping rules are parsed
to identify if it contains quoted or quotedNonAsserted keys. This determines if
the translation requires producing RML-star mapping rules. If true, a hash table
is also created for the mapping instances of rml:NonAssertedTriplesMap.

In YARRRML, lists of sources and subjects maps can be defined within the
same triples map, but [R2]RML triples maps may contain only one source and
one subject. Hence, for each mapping document, a list of sources and subjects
is first collected and then translated depending on the desirable output format
([R2]RML[-star]). Nevertheless, multiple predicate maps and object maps are
allowed within the same triples map, and they are directly translated to RML.
Finally, the cartesian product of sources and subject maps together with the
predicate object maps is combined to generate the desirable triples map. Before
returning the mapping rules, Yatter validates that the generated output is a
valid RDF graph.

15 https://github.com/kg-construct/yarrrml-spec/pull/4
16 http://xmlns.com/foaf/0.1/
17 http://semweb.mmlab.be/ns/rml#
18 http://www.w3.org/1999/02/22-rdf-syntax-ns#

8 Iglesias-Molina et al.

Algorithm 1: YARRRML-star translation algorithm

Result: [R2]RML mapping document
input m←− yarrrml rules;
format←− output format;
output m←− ∅;
output m.add(translate prefixes(input m));
if format == RML then

output m.add(translate functions(input m));
output m.add(translate targets(input m));
is star, non asserted maps← analyze rml star(input m);

end
output m.add(translate databases access(input m));
ext sources← get external sources(input m);
for tm ∈M.get triples map() do

source list← translate source(format, get source list(ext sources, tm));
subject list← translate subject(is star, format, get subject list(tm));
predicates objects← translate predicates objects(is star, format, tm);
for s ∈ source list do

for subj ∈ subject list do
m← combine(s, subj, predicates objects, non asserted maps));
output m.add(m);

end

end

end
return validate(output m);

Although YARRRML leaves the RDF-based syntax of the mapping rules to
be processed only by the RDF graphs construction systems, we also provide
a human-readable output considering previous experiences [4, 6, 7]. This helps
knowledge engineers in complex data integration contexts to easier understand if
the mapping document in YARRRML represents the desirable rules of [R2]RML
and, hence, if the constructed RDF graph will be correct or not. Thus, the
output mapping follows a Turtle-based syntax, using predicate object lists within
blank node properties19, as recommended by the [R2]RML specifications. We
also ensure the same mapping rules’ order as they are defined in YARRRML.
Functions, targets, and databases appear first, while for each rr:TriplesMap,
the sequence is: source, subject map, and the set of predicate object maps.

The source code of Yatter is openly available under Apache 2.0 license5.
Following open science best practices, each release automatically generates a
dedicated DOI to ensure reproducibility20. The development is under continuous
integration using GitHub Actions and the YARRRML test-cases (Section 6) have
more than 80% code coverage. Yatter is available through PyPi as a module21

to be easily integrated in any Python development.

19 https://www.w3.org/TR/turtle/#unlabeled-bnodes
20 https://doi.org/10.5281/zenodo.7024500
21 https://pypi.org/project/yatter/

Human-Friendly RDF Graph Construction: Which one do you chose? 9

6 Validation

We validate the extensions to YARRRML and the developed implementation
by proposing and testing a set of test cases, and comparing to other proposed
user-friendly serialisations and corresponding systems.

6.1 YARRRML Test Cases

Test cases are a common method to evaluate the conformance of a system [1, 12].
To the best of our knowledge, previous R2RML [20] and RML [12] test cases were
not translated to any human-friendly serialisation (e.g., YARRRML). Relying
on [R2]RML test cases, we propose a set of representative test cases (including
also the new features presented in this work) to assess the conformance of any
YARRRML translator system. The proposed test cases require to be two-fold
defined: to cover the complete vocabulary of the serialisation, and also have the
flexibility to declare the rules (e.g., shortcuts or location of the keys).

We follow a systematic methodology for creating the YARRRML test cases.
We analyzed the [R2]RML test cases and observed that several assess correct
data generation. Since YARRRML serves as user-friendly serialisation for an-
other mapping language, the focus of its test cases is not on assessing data
correctness, but on covering the language expressiveness. Hence, we select 15
R2RML test cases that cover the R2RML features and manually translate them
into YARRRML. Since RML is a superset of R2RML, it introduces modifica-
tions with respect to R2RML to include the definition of heterogenous datasets
(e.g., rr:LogicalTable is superseded by rml:LogicalSource). We propose 8
new test cases to cover these features.

For features not covered by the RML test cases, we follow a similar procedure.
We inspected the RML-star test cases [3], and translated to YARRRML the
ones that provide a complete coverage of this extension. From the 16 test cases
proposed to assess the conformance of RML-star, we adapt 6. Finally, as there
are still no test cases proposed for RML-Target, RML-FNML, RML dynamic
language tags and datatypes, we proposed another 21 test cases to cover them.

In total, we defined 50 YARRRML test cases and their corresponding trans-
lation to RML or R2RML. They are openly available22 to be used by any
YARRRML-compliant system. Yatter passes all test cases successfully.

6.2 Serialisations Comparison

We compare a set of user-friendly serialisations and languages, namely SMS2 [17],
XRM [21], ShExML [11] and YARRRML [13] incorporating the updates de-
scribed in Section 4, regarding their expressiveness. To that end, we study 15 fea-
tures that tackle usual characteristics and functionalities in mapping languages.
We describe each and discuss how each serialisation addresses it (Table 1).

LF1. Subject Term Type. This feature indicates what kind of RDF[-star]
term the language can generate as subject. In RDF, subjects can be IRIs or

22 https://github.com/oeg-upm/yarrrml-validation

10 Iglesias-Molina et al.

Table 1: Features of user-friendly serialisations. BN stands for blank node, L for
literal, ST for RDF-star triple, C for constant and D for dynamic. Underlined
features indicate the updates of YARRRML-star, while “*” indicates that a
feature is possible with the implementation but not explicit in the serialisation.

ShExML SMS2 XRM YARRRML-star

LF1 BN, IRI BN, IRI, ST IRI BN, IRI, ST

LF2 C, D (1..1) C, D, (1..1) C, D, (1..1) C, D (0..1)

LF3 IRI IRI IRI IRI

LF4 C (1..1) C, D (1..1) C (1..1) C, D (1..N)

LF5 BN, IRI, L BN, IRI, L, ST IRI, L BN, IRI, L, ST

LF6 C, D (1..1) C, D (1..N) C, D (1..1) C, D (1..N)

LF7 C, D (0..1) C (0..1) C (0..1) C, D (0..1)

LF8 C, D (0..1) C, D (0..1) C (0..1) C, D (0..1)

LF9 C (0..1) C (0..1) C, D (0..N) C, D (0..N)

LF10 (1..N) (1..N) (1..N) (1..N)

LF11 Input Input Input Input, output

LF12 Yes No* No* Yes

LF13 Yes No No No

LF14 Yes Yes No Yes

LF15 Yes No No Yes

blank nodes, while in RDF-star they can also be RDF-star triples. All seriali-
sations enable the creation of subjects at least as IRIs, SMS2 and YARRRML
additionally implement RDF-star triples and, along with ShExML, blank nodes.

LF2. Subject Generation. This feature indicates if subjects can be gen-
erated as constant or dynamic values; and how many subject declarations are
allowed at a time. In dynamically generated values, the subject value changes
with a field in the data source. In our example, the subject uses the field “ID” to
generate different subject for each row of input data (List 1 line 6) . All serialisa-
tions can generate constant and dynamic subjects. For each set of rules, exactly
one subject declaration is expected, i.e. one subject for predicate-object pairs.
YARRRML can also accept no subject declaration, producing a blank node.

LF3. Predicate Term Type. This feature indicates if the serialisation is
able to generate an IRI for a predicate and all serialisations do so.

LF4. Predicate Generation. This feature indicates if predicates can be
generated as constant or dynamic values; and how many predicate declarations
are allowed at a time. In dynamically generated values, the subject value changes
with a field in the data source. SMS2 and YARRRML enable dynamic predicates,
and YARRRML is also able to handle more than one predicate, which avoids
repeating the same object for different predicates.

Human-Friendly RDF Graph Construction: Which one do you chose? 11

LF5. Object Term Type. This feature indicates what kind of RDF[-star]
term the serialisation is able to generate as object. The serialisations can generate
the same kinds of terms as in subjects (LF1), with the addition of literals.

LF6. Object Generation. This feature indicates if objects can be generated
as constant or dynamic values; and how many predicate declarations are allowed
at a time. As for subjects, all serialisations can generate constant and dynamic
objects. In addition, SMS2 and YARRRML allow more than one at a time, which
avoids repeating the same predicate for different objects.

LF7. Datatype. This feature indicates if datatypes can be specified constant
or dynamically. All serialisations enable the optional declaration of constant
datatypes, but ShExML and YARRRML also enable dynamic datatypes.

LF8. Language Tag. This feature indicates if language tags can be con-
stant or dynamic. Just as for datatypes, all serialisations enable the optional
declaration of constant language tags, XRM is the only not allowing dynamic.

LF9. Named Graph. This feature indicates if named graphs can be as-
signed to the generated statements and how (constant or dynamically). All serial-
isations enable their optional declaration as constant IRI. XRM and YARRRML
also enable more than one graph assignation, and allow dynamic values.

LF10. Data references. This features indicates how many data references
a term can contain when generated dynamically (i.e. when its value changes with
the input data). It applies to subjects, predicates, objects, datatypes, language
tags and named graphs when the serialisation allows dynamic generation. All
serialisations allow more than one data reference for dynamic generation.

LF11. Data Description. This feature indicates if the input or output data
(e.g., format, iteration, name, path, etc.) can be described. All serialisations can
describe input data source, and YARRRML also provides the output data source.

LF12. Data Linking. This feature indicates if explicit data linking (e.g.
join, fuzzy linking, etc) can be performed with mapping rules. ShExML and
YARRRML provide specific features for this end; in XRM and SMS2, however,
it is not explicit, but it is possible by using SQL queries.

LF13. Nested Hierarchies. This feature indicates if different levels of a
hierarchy source can be accessed in the same data iteration. ShExML is the only
language that implements this feature. It is not implemented in YARRRML since
it is neither supported in RML as a language feature in the time of writing.

LF14. Functions. This indicates if data transformations are applicable to
input data (e.g. lowercase). XRM is the only serialisation not supporting it.

LF15. Conditions. This feature indicates if a statement is generated or not
depending on a condition. Only ShExML and YARRRML implement this.

Discussion. All serialisations offer a rich variety of mapping features, but
ShExML and YARRRML have a richer selection. SMS2 leverages the SPARQL
syntax, lowering the learning curve for SPARQL users. At the same time, data
processing is limited to basic SPARQL functions and the user is unable to inte-
grate custom ones. XRM is designed to mimic natural language and adds mini-
mal overhead with its own syntax keywords, which also makes it easy-to-learn,
but provides a more limited variety of features.

12 Iglesias-Molina et al.

Table 2: Features of the systems that support the different languages.
ShExML
translator

Stardog
XRM

translator
YARRRML

parser
Yatter

SF1 Open Source Closed source Closed source Open Source Open Source

SF2 Java Java Java Javascript Python

SF3
RDB, CSV,
JSON, XML,

RDF

RDB, NoSQL,
CSV, JSON,
GraphQL

RDB, CSV,
XML

RDB, NoSQL,
CSV, JSON,

XML

RDB, NoSQL,
CSV, JSON,

XML

SF4 ShExML
R2RML,

SMS, SMS2
XRM

YARRRML,
R2RML, RML

YARRRML,
R2RML, RML

SF5
RML,
RDF

RDF
R2RML, RML,
CSVW, CARML

R2RML, RML,
YARRRML

R2RML, RML,
YARRRML

SF6 N/A Yes N/A No Yes

SF7 Yes Yes N/A No Yes

SF8 Yes N/A N/A No Yes

6.3 Systems Comparison

We also compare the systems that support the aforementioned serialisations:
ShExML translator9, Stardog3 (with focus on how Stardog maps data sources
to RDF graphs, using R2RML or SMS2), XRM translator [21], and YARRRML-
parser23 and our system, Yatter [5]. We study 8 system features to draw conclu-
sions about them including:

SF1. Availability. Stardog and XRM are commercial systems and their
implementation is not available. ShExML Java library9, YARRRML-parser23

and Yatter24 are all available as GitHub repositories.

SF2. Programming Language. ShExML, XRM and Stardog are built in
Java, YARRRML-parser in Javascript and Yatter in Python.

SF3. Input Data Sources. This feature indicates the data source formats
that the system can translate, given the corresponding mapping rules. All sys-
tems support relational databases and CSV files as input data sources. Only
Stardog and Yatter support NoSQL data sources.

SF4. Input Serialisation. This feature indicates the input mapping seri-
alisation. All systems support their corresponding mapping serialisation. Addi-
tionally, Stardog can transform R2RML mapping rules to RDF graphs, whereas
both YARRRML systems can translate R2RML or RML files into YARRRML.

SF5. Output Serialisation. This indicates the output mapping serialisa-
tion. XRM and YARRRML systems translate their mapping rules to [R2]RML,
while XRM also supports CARML and CSVW. Stardog directly constructs the
RDF graph. ShExML generates both RML mapping rules and RDF graphs.

23 https://github.com/RMLio/yarrrml-parser
24 https://github.com/oeg-upm/yatter/

Human-Friendly RDF Graph Construction: Which one do you chose? 13

SF6. RDF-star Support. Only Stardog and Yatter support this feature.
Stardog added RDF-star statement support in one of their latest releases using
the “Edge Properties” configuration. Yatter improves upon YARRRML-parser
by also enabling the construction of RDF-star graphs.

SF7. Dynamic Language Tag Support. ShExML, Yatter and Stardog
provide support for this feature.

SF8. Dynamic Datatype Tag Support. Yatter and ShExML are the only
systems that enable the reference of datatypes dynamically.

Additionally, based on the YARRRML test cases, we develop the correspond-
ing test cases for the other analyzed serialisations. The results of the conformance
test of the analysed systems are presented online22.

Discussion. All systems provide a solid user experience and are -mostly-
highly conformant with their corresponding serialisation. ShExML is especially
useful for integrating different data sources and formats, but lacks RDF-star
support, writing functions results cumbersome and the translation to RML is
incomplete. Stardog works smoothly with its proprietary Stardog databases, but
managing several different sources becomes complex as a different mapping rule
set is required per source. XRM is installed within a coding editor, and helps
actively the writing process with suggestions and warnings. YARRRML-parser
supports most of the functionalities that are also implemented in Yatter but
still it does not support the latest RML features. YARRRML-parser translates
functions to non-standard set of RML rules, while our implementation supports
the specification proposed by the W3C CG on Knowledge Graph Construction25.

6.4 Use Cases

Constructing RDF graphs for Research-Performing Organizations. In
a previous work [4] we used YARRRML-star and Yatter to support the creation
of RDF graphs for research supporting organizations with R2RML. Thanks to
this setup, we created a fluent and iterative pipeline for testing and debugging
the created mapping rules in a complex environment, where almost 2000 tables
were mapped into RDF. Additionally, the easy-to-read RML outcome helped
knowledge engineers to easily identify and fix errors during the construction of
the RDF graphs.
The EU Public Procurement Data Space (PPDS). The EU PPDS con-
structs a decentralized KG26, by declaratively mapping procurement data from
each EU member state into the e-Procurement Ontology (ePO)27. YARRRML-
star is the selected serialisation to ensure the maintainability of the graph con-
struction, and it is currently used together with Yatter to develop the initial
pilots. In the latest pilots, open Spanish public procurement data extracted
from their national platform was mapped, where the mapping rules28 contain
dynamic language tags and complex XPath expressions.

25 https://w3id.org/kg-construct/rml-fnml
26 https://europa.eu/!qx9WxQ
27 https://docs.ted.europa.eu/EPO/latest/
28 https://github.com/oeg-upm/yatter/tree/main/test/projects/PPDSTC

14 Iglesias-Molina et al.

7 Conclusions and Future Work

In this paper, we present YARRRML-star, an extension of YARRRML serialisa-
tion to fully cover the RML specification supported by a new translator, Yatter.
Additionally, we compare YARRRML-star with other human-friendly mapping
serialisations in terms of language features and system support over a set of
conformance test cases. We demonstrated the impact of our approach over two
real use cases, situating YARRRML-star and Yatter as a promising setup for
constructing knowledge graphs in complex environments.

In future work, we plan to extend YARRRML-star to support collections
and containers29 in both the serialization and in Yatter. We are also planning
to include more test cases to verify correctness in the inverse translation from
RML or R2RML mapping rules to YARRRML-star.

Acknowledgement

The work presented in this paper is partially funded by Knowledge Spaces project
(Grant PID2020-118274RB-I00 funded by MCIN/AEI/ 10.13039/501100011033)
and partially supported by Flanders Make, the strategic research centre for the
manufacturing industry. David Chaves-Fraga is supported by the Madrid Gov-
ernment (Comunidad de Madrid-Spain) under the Multiannual Agreement with
Universidad Politécnica de Madrid in the line Support for R&D projects for Beat-
riz Galindo researchers, in the context of the V PRICIT (Regional Programme
of Research and Technological Innovation).

References

1. Arenas-Guerrero, J., Iglesias-Molina, A., Chaves-Fraga, D., Garijo, D., Corcho,
O., Dimou, A.: Morph-KGCstar: Declarative generation of RDF-star graphs from
heterogeneous data. Semantic Web (Under Review) (2023)

2. Chatterjee, A., Nardi, C., Oberije, C., Lambin, P.: Knowledge graphs for covid-19:
An exploratory review of the current landscape. Journal of personalized medicine
11(4), 300 (2021)

3. Chaves, D., Iglesias, A., Garijo, D., Guerrero, J.A.: kg-construct/rml-star-test-
cases: v1.1 (May 2022). https://doi.org/10.5281/zenodo.6518802

4. Chaves-Fraga, D., Corcho, O., Yedro, F., Moreno, R., Oĺıas, J., De La Azuela, A.:
Systematic Construction of Knowledge Graphs for Research-Performing Organiza-
tions. Information 13(12), 562 (2022)

5. Chaves-Fraga, D., Gonzalez, M., Doña, D.: oeg-upm/yatter (Feb 2023).
https://doi.org/10.5281/zenodo.7643310, https://doi.org/10.5281/zenodo.

7643310

6. Chaves-Fraga, D., Priyatna, F., Cimmino, A., Toledo, J., Ruckhaus, E., Corcho,
O.: Gtfs-madrid-bench: A benchmark for virtual knowledge graph access in the
transport domain. Journal of Web Semantics 65, 100596 (2020)

29 https://w3id.org/kg-construct/rml-collections-containers

Human-Friendly RDF Graph Construction: Which one do you chose? 15

7. Corcho, O., Chaves-Fraga, D., Toledo, J., Arenas-Guerrero, J., Badenes-Olmedo,
C., Wang, M., Peng, H., Burrett, N., Mora, J., Zhang, P.: A high-level ontology
network for ict infrastructures. In: International Semantic Web Conference. pp.
446–462. Springer (2021)

8. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
W3C Recommendation, World Wide Web Consortium (W3C) (2012), http://

www.w3.org/TR/r2rml/

9. Delva, T., Arenas-Guerrero, J., Iglesias-Molina, A., Corcho, O., Chaves-Fraga, D.,
Dimou, A.: RML-star: A Declarative Mapping Language for RDF-star Genera-
tion. In: International Semantic Web Conference, ISWC, P&D. vol. 2980. CEUR
Workshop Proceedings (2021), http://ceur-ws.org/Vol-2980/paper374.pdf

10. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: A Generic Language for Integrated RDF Mappings of Hetero-
geneous Data. In: Proceedings of the 7th Workshop on Linked Data on the Web.
vol. 1184. CEUR Workshop Proceedings (2014), http://ceur-ws.org/Vol-1184/
ldow2014_paper_01.pdf

11. Garćıa-González, H., Boneva, I., Staworko, S., Labra-Gayo, J.E., Cueva-Lovelle,
J.M.: ShExML: improving the usability of heterogeneous data mapping lan-
guages for first-time users. PeerJ Computer Science 6, e318 (nov 2020).
https://doi.org/10.7717/peerj-cs.318

12. Heyvaert, P., Chaves-Fraga, D., Priyatna, F., Corcho, O., Mannens, E., Verborgh,
R., Dimou, A.: Conformance test cases for the rdf mapping language (rml). In:
Iberoamerican Knowledge Graphs and Semantic Web Conference. pp. 162–173.
Springer (2019)

13. Heyvaert, P., De Meester, B., Dimou, A., Verborgh, R.: Declarative rules for linked
data generation at your fingertips! In: European Semantic Web Conference. pp.
213–217. Springer (2018)

14. Iglesias-Molina, A., Arenas-Guerrero, J., Delva, T., Dimou, A., Chaves-Fraga,
D.: RML-star. W3C Draft Community Group Report (May 2022), https://

kg-construct.github.io/rml-star-spec/

15. Prud’hommeaux, E., Labra Gayo, J., Solbrig, H.: Shape expressions: An RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems (2014)

16. Rojas, J.A., Aguado, M., Vasilopoulou, P., Velitchkov, I., Van Assche, D., Colpaert,
P., Verborgh, R.: Leveraging semantic technologies for digital interoperability in
the european railway domain. In: The Semantic Web–ISWC 2021: 20th Interna-
tional Semantic Web Conference, ISWC 2021, Virtual Event, October 24–28, 2021,
Proceedings 20. pp. 648–664. Springer (2021)

17. Stardog: Sms2 (stardog mapping syntax 2) (2022), https://docs.stardog.com/
virtual-graphs/mapping-data-sources

18. Van Assche, D., Delva, T., Haesendonck, G., Heyvaert, P., De Meester, B., Dimou,
A.: Declarative rdf graph generation from heterogeneous (semi-) structured data:
A systematic literature review. Journal of Web Semantics p. 100753 (2022)

19. Van Assche, D., Delva, T., Heyvaert, P., De Meester, B., Dimou, A.: Towards a
more human-friendly knowledge graph generation & publication. In: ISWC2021,
the International Semantic Web Conference. vol. 2980. CEUR (2021)

20. Villazón-Terrazas, B., Hausenblas, M.: R2RML and Direct Mapping Test Cases.
W3C Note, W3C (2012), http://www.w3.org/TR/rdb2rdf-test-cases/

21. Zazuko: Expressive rdf mapper (xrm) (2022), https://zazuko.com/products/

expressive-rdf-mapper/

