
Re-Construction Impact on Metadata Representation Models
Ana Iglesias-Molina
ana.iglesiasm@upm.es

Ontology Engineering Group,
Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

Jhon Toledo
ja.toledo@upm.es

Ontology Engineering Group,
Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

Oscar Corcho
oscar.corcho@upm.es

Ontology Engineering Group,
Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

David Chaves-Fraga
david.chaves@usc.es

Grupo de Sistemas Intelixentes
Universidade de Santiago de Compostela
Santiago de Compostela, Galicia, Spain

ABSTRACT
Reification in knowledge graphs has been present since the incep-
tion of RDF to allow capturing additional information in triples,
usually metadata. The need of adopting or changing a metadata
representation in a pre-existing graph to enhance the knowledge
capture and access can lead to inducing complex structural changes
in the graph, according the target representation’s schema. In these
situations, it is necessary to decide whether to construct the knowl-
edge graph again from its original sources, or to re-construct it
using the current version of the graph. In this paper we conduct an
empirical study to analyze which re-construction approach is more
suitable for switching the representation approach from the created
graph ensuring that the additional represented knowledge is pre-
served. We study four well-known metadata representations, using
mapping languages to construct the graph, and SPARQL CONSTRUCT
queries to re-construct it. With this work we aim to provide insights
about the impact of re-construction on metadata representations
interoperability and the implications of different approaches.
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1 INTRODUCTION
Knowledge graphs (KG) have gained popularity in recent years for
integrating and publishing knowledge on the web [22]. KGs are
modelled according to schemes that are not immutable, as they
are subject to modifications triggered by changes in the domain of
knowledge or in the consumption needs of downstream tasks. An
example is the need to incorporate additional knowledge about a
triple, which is known as statement reification. Reification is usually
used to include metadata and provenance to existing triples [15].

Throughout the years, different metadata representations have
been proposed for RDF, such as Named Graphs [10], N-Ary Rela-
tionships [33] or RDF-star [18]. For instance, Nanopublications [17]
adopt a Named Graph-based model to publish minimal scientific
statements along with their provenance and associated context.
Meanwhile, in ontology engineering, N-Ary Relationships arewidely
used as an ontology design pattern [16]. It is not uncommon for an
existing KG to adopt one of these representations, e.g., the publica-
tion of the DisGeNet KG as Nanopublications [35]; or the incorpo-
ration of qualifiers in the Wikidata model [14].

When such graph re-structuration is needed, the following ques-
tion arises: Is it more convenient to construct the graph from the
original input data sources again, or to re-construct it within the
triplestore? Previous studies report on analysis of querying these
representations [15, 21, 25, 34], but not on their re-construction. In
this paper, we analyze how re-construction approaches behave with
metadata representation models, and the parameters that influence
their choice. To this end, we perform a comprehensive empiri-
cal study of this re-construction in four representations (Standard
Reification [30], N-Ary Relationships [33], Named Graphs [10] and
RDF-star [18]) using (i) declarative mappings to construct each rep-
resentation with KG construction systems and (ii) transformation
per peers of representations with SPARQL CONSTRUCT queries in
different triplestores. We aim to unravel the aspects that influence
the interchange and interoperability of metadata representations,
to help in the decision on how to perform switch of models without
information loss. We also raise awareness of recently overlooked
aspects of CONSTRUCT queries, while contributing to research on
the impact of metadata representation sustainability.

The remainder of this paper is structured as follows: Section 2
motivates the work with an example; Section 3 presents the experi-
mental setup, queries and datasets used in the evaluation; Section 4
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Figure 1: Alternatives for re-constructing a pre-existing KG.

shows the results obtained to test reconstruction with mapping
engines and triplestores; Section 5 provides insights and discusses
the obtained results; Section 6 presents related works; and Section 7
concludes the paper with final remarks and future steps.

2 MOTIVATING EXAMPLE
Consider the Semantic MEDLINE Database (SemMedDB) [28], that
contains entities extracted from biomedical texts, the semantic types
of these concepts and a timestamp of when they were extracted. A
stable version of a knowledge graph represents this metadata, where
the timestamp and semantic type are related to its correspondent
entity with an n-ary relationship. However, the maintainers of this
knowledge graph want to reduce the size of the graph by reducing
the number of nodes, as well as to represent this information with
RDF-star to start adopting the RDF 1.2 specification.

The graph maintainers have access to the original source data,
so they can change the original KG construction pipeline, that uses
declarative mappings to construct the graph. However, since this
graph is not going to be updated with new data, it is also possible to
change the structure of the graph with queries within the triplestore
where it is maintained. They know the time it takes to generate the
graph in its original representation. However, they are not certain
whether generating the graph in the new representation using this
pipeline will take more time, or if with queries the transformation
could be performed faster without information loss (Fig. 1); and
which representations can be generated with each approach. Hence,
the objective of this work consist of assessing the aspects that
influence this situation to help in making an informed decision.

3 METHODOLOGY
In this section we present the methodology followed to analyze
how different approaches for re-constructing knowledge graphs
impact the metadata representations interchange. More in detail,
we compare two ways of re-constructing a KG to change its repre-
sentation, (i) with KG construction technologies from scratch (e.g.,
RML [27]) and (ii) with CONSTRUCT queries in a triplestore from the
previous version of the graph. We aim to answer the following re-
search questions: (RQ1) In which cases is it more efficient in terms
of time to either construct a reified knowledge graph from the orig-
inal data sources or to re-construct it within a triplestore? (RQ2)
Which of these two approaches is more scalable as the size of the
data increases? (RQ3) How does the behavior of these approaches
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Figure 2: Structure of SemMedDB graph in four metadata
representations: (a) Standard Reification, (b) Named Graphs,
(c) N-Ary Relationships and (d) RDF-star.

change with the metadata representation models? All resources to
reproduce the experiments are available online [23].1

3.1 Representation Models
We first introduce different models that are used for metadata rep-
resentation. Fig. 2 illustrate the descriptions showing an excerpt of
the SemMedDB dataset (used in the evaluations, see Section 3.2),
in four representations [10, 19, 30, 33]. This excerpt consists of
annotating the semantic type of an entity with a score.
Standard Reification [30] explicitly declares a resource to denote
an rdf:Statement. This statement has rdf:subject, rdf:predicate,
and rdf:object attached to it and can be further annotated with
additional statements. The resource is typically a blank node, but
an IRI can be used. In Fig. 2a, the resource :entity-stm/407 is an
rdf:Statement with four associated triples, where the objects of
the triples are the actual values of the triple (i.e. :entity/407 for
the subject, :semanticType for the predicate, and "orga" for the
object). The property :score is used with its own value as object.
Named Graphs [10] are a SPARQL 1.1 feature that allows the
assignment of an IRI to one or several triples as a graph identifier.
Hence, graph IRIs allow the unique identification of triples. These
IRIs can be used as subjects to add additional statements. In Fig. 2b,
the triple indicating the semantic type of an entity is assigned the
named graph :entity-graph/407. The graph IRI is subsequently
used as subject in a triple that annotates the confidence score of
the information within the graph.
N-Ary Relationships [33] converts a relationship into an instance
that describes the relation, which can have attached both the main
object and additional statements. This representation is widely
used in ontology engineering as an ontology design pattern [16].
In Fig. 2c, the entity :entity/407 points to an intermediate node
(:entity-semtype/ 407) which holds the triples for both the as-
signment of the semantic type and the score.
RDF-star [18, 19] extends RDF to introduce a new syntax for com-
pact triple reification. It introduces the notion of triple recursiveness
with Quoted Triples, which can be used as subjects and/or objects
of other triples. This is the only approach that extends the standard
1https://github.com/oeg-upm/kg-reconstruction-eval

https://github.com/oeg-upm/kg-reconstruction-eval
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Table 1: Number of triples of the SemMedDB graph in the
selected representations for each scale.

1K 10K 100K 1M

Standard Reification 25,000 249,997 2,499,966 24,999,607
Named Graphs 10,000 99,994 999,932 9,999,190

N-Ary Relationships 15,000 149,997 1,499,966 14,999,595
RDF-star 8,485 78,655 710,588 6,503,388

RDF features. This representation is currently being incorporated
into the RDF 1.2 specification [19], which is currently being devel-
oped under the RDF-star W3C Working Group.2 In Figure 2d we
observe the example as an RDF-star graph, and it is represented in
RDF as «:entity/407 :semanticType "orga"» :score 0.8.

3.2 Dataset
We use the Semantic MEDLINE Database (SemMedDB) [28] in
the experimental evaluation, which is used in previous evalua-
tions of metadata representation [32, 34]. This database consists
of a repository with biomedical entities and relationships (subject-
predicate-object) extracted from biomedical texts, and is available as
a relational database and CSV files.3 It is licensed under the UMLS -
Metathesaurus License Agreement,4 which may be accessed with
an account with the UMLS license.5

We use the CSV files for (i) entity predictions (from ENTITY.csv),
and (ii) predication predictions (from PREDICATION.csv and PREDI-
CATION_AUX.csv). Subjects and objects (from predications), and
entities are assigned a semantic type with a confidence score. These
semantic types categorize the extracted concept in the biomedi-
cal domain.6 In addition, the extraction of subjects and objects is
assigned a timestamp. Thus, the score and timestamp represent
metadata for other statements. We model this tabular dataset as
five annotated statements: Three assign semantic types to subjects,
objects, and entities with a confidence score; and two provide the
timestamp for the extraction of subjects and objects from text.

To test the scalability of the evaluated approaches, we subset this
dataset into four sizes taking as input from the aforementioned CSV
files with (i) 1K rows, (ii) 10K rows, (iii) 100K rows and (iv) 1M rows.
The number of triples produced for each representation version on
each scale is shown in Table 1.

3.3 Mappings and Queries
The following resources are used: (i) a set of declarative map-
pings that are used for constructing the knowledge graph from
the SemMedDB tabular files in the four selected representations;
and (ii) a set of SPARQL queries that are used for re-constructing
the graph within different triplestores.

2https://www.w3.org/groups/wg/rdf-star/
3https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemMedDB_
download.html
4https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/
release/license_agreement.html
5An account with the UMLS license can be requested at https://www.nlm.nih.gov/
databases/umls.html.
6https://www.nlm.nih.gov/research/umls/new_users/online_learning/SEM_003.html

Table 2: Characteristics of mappings in RML and SPARQL-
Anything. #TM stands for number of Triples Map, #POM
for Predicate Object Map, and #TP for Triple Patterns. The
shown operators appear usually in the WHERE clause; the ones
marked with 𝑐 appear in the CONSTRUCT clause.

RML SPARQL-Anything

#TM #POM #TP𝑐 Additional operators

Standard Reification 9 20 25 UNION, BIND
Named Graphs 10 10 10 UNION, BIND, GRAPH𝑐

N-Ary Relationships 13 15 15 UNION, BIND
RDF-star 10 10 10 UNION, BIND

We use two sets of mappings, one set written in the RML map-
ping language [13, 27], and the other in SPARQL-Anything [7].
These languages allow describing transformation of heterogeneous
data sources into RDF following the schema provided by an on-
tology or vocabulary, and are processed by different engines (see
Section 3.4). Each set of mappings is comprised of four mappings, to
construct the KGs in the four representations selected (i.e. Standard
Reification, N-Ary Relationships, Named Graphs and RDF-star).

RML [27] extends the R2RML Recommendation [11] to describe
more data sources besides Relational Databases. RML rules are
grouped within Triples Maps, which contain one Logical Source, one
Subject Map and zero to multiple Predicate Object Maps. Logical
Sources describe the input data to be transformed. Subject Maps
indicates how the subjects of the triples are created, while Predicate
Object Maps specify how the predicates and objects of the triples are
created. Listing 1 shows an example of a mapping that generates
in RDF-star the annotation of the semantic types of entities with a
score. This mapping uses the RML-star module [12, 27] to generate
RDF-star graphs, which allows RML to quote Triples Map with the
rml:quotedTriplesMap property. For these mappings, we show
the number of sets of rules (i.e. Triples Map) and Predicate Object
Maps specified in Table 2.
<#Entity > a rml:TriplesMap ;

rml:logicalSource [ rml:source "ENTITY.csv" ];

rml:subjectMap [ rml:template ":{ ENTITY_ID }" ];

rml:predicateObjectMap [

rml:predicate :semanticType;

rml:objectMap [ rml:reference "SEMTYPE" ] ] .

<#EntityScore > a rml:AssertedTriplesMap ;

rml:logicalSource [ rml:source "ENTITY.csv" ];

rml:subjectMap [ rml:quotedTriplesMap <#Entity >;];

rml:predicateObjectMap [

rml:predicate :score ;

rml:objectMap [ rml:reference "SCORE" ] ] .

Listing 1: RML-star mapping snippet to create the RDF-star
graph for entity from data in ENTITY.csv.

SPARQL-Anything [7] heavily relies on the SPARQL syntax, over-
riding the SERVICE operator while leveraging the rest of its features.
This operator is then always present in the queries and hence is not
shown in the table. The graphs are built with CONSTRUCT clauses.

https://www.w3.org/groups/wg/rdf-star/
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemMedDB_download.html
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemMedDB_download.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/license_agreement.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/license_agreement.html
https://www.nlm.nih.gov/databases/umls.html
https://www.nlm.nih.gov/databases/umls.html
https://www.nlm.nih.gov/research/umls/new_users/online_learning/SEM_003.html
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Table 3: Characteristics of the SPARQL queries used for the evaluation to transform the graph from a source representation to
a target representation. #TP stands for the number of triple patterns. Fields marked with 𝑐 appear in the CONSTRUCT clause,
while 𝑤 indicates the WHERE clause.

Source Target #TP #TP𝑤 #TP𝑐 UNION𝑤 BIND𝑤 FILTER𝑤 VALUES𝑤 GRAPH

Q1

N-AryRel.

Std. Reif. 16 6 10 ✓ ✓

Q2 RDF-Star 10 6 4 ✓ ✓

Q3 Named Graphs 10 6 4 ✓ ✓ ✓𝑐

Q4

Std. Reif.

RDF-star 12 8 4 ✓ ✓

Q5 N-Ary Rel. 35 20 15 ✓ ✓

Q6 Named Graphs 12 8 4 ✓ ✓ ✓𝑐

Q7

RDF-star

Std. Reif. 30 5 25 ✓ ✓ ✓

Q8 N-Ary Rel. 20 5 15 ✓ ✓ ✓

Q9 Named Graphs 15 5 10 ✓ ✓ ✓ ✓𝑐

Q10

Named Graphs

Std. Reif. 14 4 10 ✓ ✓ ✓𝑤

Q11 RDF-Star 8 4 4 ✓ ✓ ✓𝑤

Q12 N-Ary Rel. 19 4 15 ✓ ✓ ✓𝑤

Listing 2 shows a mapping example that generates in RDF-star
the annotation of the semantic types of entities with a score. For
each mapping, we show the number of triple patterns in this clause
and additional SPARQL clauses (Table 2). All mappings contain the
same number of triple patterns in the WHERE clause.

CONSTRUCT {

?entity_id_iri :semanticType ?entity_semtype .

<< ?entity_id_iri :semanticType ?entity_semtype >>

:score ?entity_score . }

WHERE {

{ SERVICE <x-sparql-anything:location=./data/entity.csv>

{ [] xyz:ENTITY_ID ?entity_id;

xyz:SEMTYPE ?entity_semtype;

xyz:SCORE ?entity_score;

BIND(uri(concat(str("http://semmeddb.com/entity/"),

encode_for_uri(?entity_id))) as ?entity_id_iri) }}}

Listing 2: SPARQL-Anything mapping snippet to create
the RDF-star graph for entity from data in ENTITY.csv.

CONSTRUCT {

?entity_id_iri :semanticType ?entity_semtype .

<< ?entity_id_iri :semanticType ?entity_semtype >>

:score ?entity_score . }

WHERE {

GRAPH ?entity_graph_iri {

?entity_id_iri :semanticType ?entity_semtype }

?entity_graph_iri :score ?entity_score . }

Listing 3: SPARQL query snippet to create the RDF-star
graph from the Named Graphs representation for entity.

SPARQL queries use the CONSTRUCT clause to re-construct a
given graph with one of the representations into the other three
representations. We use twelve queries to transform all pairs of

representations. We show in Table 3 for each query the number
of triple patterns in the WHERE and CONSTRUCT clauses, and the
additional operators used. Except for GRAPH, the rest of operators
only appear within the WHERE clause. An example of a query is
shown in Listing 3, which generates RDF-star from Named Graphs.

3.4 Engines
We choose two mapping engines and three triplestores to be repre-
sentative in our evaluation, while focusing on open-source tools.
The selectedmapping engines,Morph-KGC (v2.5.0) [4] and SPARQL-
Anything (v0.8.1) [7] are the engines with a stable version capable
of producing RDF-star at the time of writing this paper. The SDM-
RDFizer [24] is developing this feature, but no stable version has
been released yet. Regarding triplestores, we use the free version
of GraphDB (v10.2.1), and the open-source Jena Fuseki (v4.8.0) and
Oxigraph (v0.3.16). While GraphDB and Jena Fuseki store the graph
in physical memory, Oxigraph performs the queries in memory. All
engines perform duplicate removal in the results by default, except
for Oxigraph. For this triplestore, we add and measure a second
step of duplicate removal with BASH commands.

We did attempts to include Virtuoso in the evaluation; however,
several issues were raised. The number of queries this triplestore
can perform is very limited in this evaluation (only 4 from 12): This
triplestore does not yet implement RDF-star and cannot produce
named graphs with CONSTRUCT. In addition, Virtuoso limits the
number of triples that can be produced with this clause to 1M.7 By
removing this limit, an error appears that impedes file writing with
large results, which has been unsolved for years.8

3.5 Experimental setup and Metrics
We perform the evaluation in two steps. First, the KG construction
(KGC) system evaluation is run, taking as input the SemMedDB
dataset in CSV format and the mappings, and producing the corre-
sponding RDF datasets in the four selected representations. Then,
7https://lig-membres.imag.fr/rousset/publis/tess.pdf
8https://github.com/openlink/virtuoso-opensource/issues/11

https://lig-membres.imag.fr/rousset/publis/tess.pdf
https://github.com/openlink/virtuoso-opensource/issues/11
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Figure 3: Execution time for KG construction engines with declarative mappings, and triplestores with SPARQL queries. The
results of the triplestores are grouped by the target representation representing their geometric mean. Bars with diagonal
pattern do not include some target representation times, as they report out-of-memory errors (details in Fig. 4).

the triplestore evaluation is carried out, taking as input the pro-
duced graphs in the KGC system evaluation, and producing RDF
datasets in another representation. We perform a validation step
afterwards to verify that the output graphs do not lack information.

We measure the materialization time to construct the RDF graph
from the input sources in KGC systems. For triplestores, wemeasure
query execution time as the total time from query execution until
the complete answer is generated. We also report the geometric
mean of all queries that generate graphs in the same metadata
representation, similar to that previously used by [31, 38]. The
geometric mean reports the central tendency of all execution times
for a set of queries, reducing the effect of outliers. With this metric,
we provide a general measurement of the performance of each
triplestore when generating graphs in each representation. This
allows an easier comparison with the KGC systems. We run every
experiment 5 times with a timeout of 24h, measure the time and
calculate the median. We run all experiments over an Ubuntu 20.04
server with 32 cores Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
102400 Mb RAM RDIMM, 3200 MT/s and 100 Gb HD SSD 6 Gb/s.

4 RESULTS
The evaluation results are presented in this section. Fig. 3 reports
the comparison between (KGC) systems using declarativemappings,
and triplestores with SPARQL queries. Fig. 4 reports a fine-grained
comparison of each triplestore performance on the proposed queries
performing translations between each pair of representations.

Focusing on the comparison between triplestores and KGC sys-
tems (Fig. 3), we generally observe that for small data sizes, triple-
stores obtain better results, while KGC systems scale better as data
size increases. However, except for producing N-Ary Relationships,
Fuseki and GraphDB are competitive w.r.t. SPARQL-Anything or

Morph-KGC. These triplestores obtain better results for the scales
1K and 10K, and similar ones for 100K and 1M. Additionally, de-
spite the variety in mapping characteristics, neither Morph-KGC
nor SPARQL-Anything seem to be highly affected by the different
representations, as opposed to the triplestores. The differences are
not remarkable, but in general Morph-KGC generates the fastest
Named Graphs, in contrast with SPARQL-Anything, which per-
forms equally well with Named Graphs and RDF-star. For triple-
stores, producing Standard Reification and specially N-Ary Relation-
ships is more costly than the other representations. The apparent
good performance of Oxigraph in this case is due to out-of-memory
errors in scales 100K and 1M. In addition, SPARQL 1.1 does not
allow GRAPH clause within the CONSTRUCT operator. Hence, only
Fuseki, which implements this extension natively, can generate the
Named Graphs datasets.

Comparing the behavior of engines that perform the same task,
GraphDB overcomes Fuseki and Oxigraph for SPARQL queries,
while Morph-KGC reports better results than SPARQL-Anything for
KG construction from heterogeneous data sources, as was reported
in previous works [5]. For small data sizes, GraphDB and Fuseki
perform similar, while Oxigraph reports higher query execution
time and out-of-memory errors. This is because Oxigraph loads the
complete RDF graph in memory and the physical data structures
from Fuseki and GraphDB speed up query execution time. In larger
datasets, GraphDB generally scales better than Fuseki, which for
example, reports a timeout for generating N-Ary Rel. in scale 1M.

Answering the research questions, we can say that triplestores
perform faster for small sizes (RQ1), while KGC systems exhibit a
more robust behavior with increasing data size (RQ2). In addition,
triplestores are more influenced by changes in representations,
whereas KGC systems are mostly unaffected (RQ3).
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Figure 4: Execution time of triplestores with the SPARQL queries that perform translations for pairs of representations.

Looking into the particular differences of the pairs of translation
performed with triplestores, we can observe how the different rep-
resentations affect the performance of the graph re-construction
with CONSTRUCT queries. Fig. 4 present the results grouping the
queries in the legend by the source representation (i.e. from which
representation the dataset is transformed). The behavior reported
when producing N-Ary Relationships stands out. It is more costly
to produce than the other representation, except when RDF-star
is the source representation (Q8). Queries Q5 and Q12 report an
out-of-memory error in Oxigraph for scales 100K and 1M, while
reaching a timeout in Fuseki and GraphDB in scale 1M. In contrast,
Q8 requires a more complex WHERE clause, that avoids introducing
a join that is needed in Q5 and Q12.

Table 4 shows a summary of the results from the triplestores
grouped by source and target representation. In general, Named
Graphs are the fastest representation to construct. N-Ary Relation-
ships perform the fastest as the source representation, but require
performing joins in the CONSTRUCT that make them the least suit-
able as a target representation. Standard Reification supposes the
least suitable source representation, probably because of its larger
size. Meanwhile, RDF-star performs consistently well acting as both
source and target representation. Therefore, we can conclude for
RQ3 that the combination of representations highly influences the
behavior of triplestores, both in the WHERE and CONSTRUCT clauses.

Table 4: Geometric mean of the query result times (s) from
all triplestores grouped by source representation and target
representation. The lowest times are highlighted in bold,
while the highest are underlined.

Representation 1K 10K 100K 1M

Source

Std. Reif. 0.283 4.126 56.612 1085.228
RDF-Star 0.248 1.612 15.951 223.626

Named Graphs 0.260 3.395 43.756 773.737
N-Ary Rel. 0.204 1.505 16.040 205.407

Target

Std. Reif. 0.261 2.005 34.212 252.490
RDF-Star 0.199 1.366 14.066 180.384

Named Graphs 0.126 0.836 8.524 158.678

N-Ary Rel. 0.365 7.896 67.886 2351.176

5 DISCUSSION
In this paper, we study how two graph re-construction approaches
behave with metadata representation models, and the aspects that
influence their performance ensuring no information loss.We evalu-
ate four representations with (i) KG construction systems, that con-
struct the KG from heterogeneous data with declarative mappings;
and (ii) using CONSTRUCT queries from KG stored in triplestores.
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Our evaluation shows that KGC systems are more robust for
increasing data size and interchange of metadata representation
models. These systems are able to produce the four representations
without major performance changes among them. Performing the
re-construction in triplestores is suitable for small data sizes, but it
is more dependant on the target representation and query optimiza-
tions to offer competitive performance. In addition, this approach
presents limitations as to which representations can be produced:
not all existing triplestores process RDF-star, and only Fuseki can
produce Named Graphs with CONSTRUCT. Thus, we can affirm that
performing the re-construction with mappings is in general more
reliable, as it is less affected by data size and target representation.

Regarding the representations, RDF-star and Named Graphs are
a safe option to adopt in terms of system performance for both
re-construction approaches. However, they are the ones that are
currently less supported by both KGC systems (only for RDF-star)
and triplestores. The other two representations present complete
support by a broader set of engines, not included in this study too
(e.g., RMLMapper, Virtuoso), but they present worse performance.
Independently on the representation and re-construction approach,
it is possible to re-construct a graph with no information loss.

The setup of the evaluation shows us the importance of opti-
mizing SPARQL queries, which gains relevance as the triples to
construct increase in number. For instance, the introduction of
UNION clauses was needed to avoid costly cartesian products that
prevented queries from finishing before the established timeout,
or before reaching an out-of-memory error. This is particularly
important when RDF-star is the source representation, as otherwise
queries would often incur in erroneous output graphs. While this is
well known by proficient SPARQL practitioners, it does not come as
easily for non-expert users. The performance of SPARQL-Anything,
relying almost entirely on SPARQL and Jena processing, is also
affected by these different manners of writing the mapping. In con-
trast, RML mappings are unaffected in this aspect, since how the
user writes the mapping does not influence the performance of the
compliant systems. SPARQL possess a flexibility and rich expres-
siveness that languages such as RML lack yet. Nevertheless, it poses
the risk for non-expert users to hamper the result retrieval, incur-
ring in suboptimal and erroneous queries. This opens up a challenge
for improving the query processing, or even rewriting the queries
automatically to be optimized, so as to reduce this accessibility gap
of SPARQL for non-expert users.

In addition, this evaluation brings to light that the behavior of
the CONSTRUCT clause is not as studied as other SPARQL operators.
SPARQL benchmarks often overlook this clause, as it is considered
as an extension of SELECT [38]. Hence, it is assumed that their per-
formance is comparable and not affected by the change of clause.
However, we encountered SELECT queries that returned results in
miliseconds, while taking several minutes with CONSTRUCT. In addi-
tion, all triplestores struggle when the CONSTRUCT clause includes
several joins. This fact affects not only the metadata representa-
tions studied in this paper, but also all potential transformations
for evolving knowledge graphs. Regarding KGC systems, the main
challenge still consists of their adoption, as the learning curve for
mapping languages is still steep despite efforts to lower it [26].

6 RELATEDWORK
There are diverse studies on the impact of different metadata rep-
resentations during query execution [15, 20, 21, 32, 34]. Nguyen
et al. [32] propose Singleton Properties and evaluate query perfor-
mancewith their proposal against other representations. Hernández
et al. [20] test Wikidata represented with different representations
(i.e., Standard Reification, N-Ary Relationships, Singleton Properties
and Named Graphs) over multiple triplestores, and in a subsequent
study [21] they extend the evaluation with a relational database
(PostgreSQL) and a graph database (Neo4J). Frey et al. [15] evaluates
DBpedia with different representations, including their proposal,
Companion Property, and Blazegraph’s Reification Done Right9
which is currently known as RDF-star) also with different triple-
stores. More recently, the REF-benchmark [34] evaluates different
reification approaches with the inclusion of RDF-star, providing a
version of the Biomedical Knowledge Repository (BKR) dataset [36]
and three series of queries for each representation that can be ap-
plied to different triplestores. To the best of our knowledge, these
studies focus on comparing different representations regarding
query performance, but none provides a systematic evaluation of
the impact of transformation between them.

The analysis of SPARQL triplestores has been widely studied in
the literature [1, 37]. The Berlin SPARQL Benchmark (BSBM) [8],
focused on the e-commerce domain, is one of the most well-known
benchmarks used to evaluate the performance and scalability of
triplestores and virtual knowledge graph construction systems. This
benchmark provides a set of 12 SPARQL queries, together with a
generator that scales-up the input data source for both RDF and SQL.
Only one of the 12 proposed queries evaluates the performance
of the CONSTRUCT operator. Under the assumption that triplestores
apply the same procedures to execute and optimize CONSTRUCT
and SELECT queries, other SPARQL benchmarks (e.g. WatDiv [2],
SP2Bench [38], DBPedia Benchmark [31], WDBench [3]) do not
include any SPARQL CONSTRUCT queries. Our results demonstrate
the need to apply new optimization techniques in the construction
of knowledge graphs using the CONSTRUCT operator to make their
execution more scalable.

Knowledge graph construction engines have also been evalu-
ated w.r.t. performance and scalability. BSBM [8] or NPD [29] are
examples of benchmarks used to perform these evaluations, al-
though GTFS-Madrid-Bench [9] has gained exponential popularity
and adoption since its release as a dedicated benchmark for KG
construction [39]. It provides a set of 18 queries, together with a
synthetic data generator that scales-up and distributes the input
tabular data source in multiple formats. In addition to evaluating the
capabilities of virtual KG construction systems [9], the benchmark
is also used to test the performance and scalability of materialized
knowledge graph systems [6]. All these proposals have helped to
improve these engines, yet none of them evaluate KG construction
with metadata representation. Additionally, we are not aware of
any study that compares KG construction from the original data
sources with mapping languages against its re-construction using
already existing graphs.

9https://github.com/blazegraph/database/wiki/Reification_Done_Right

https://github.com/blazegraph/database/wiki/Reification_Done_Right
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7 CONCLUSIONS
This paper aims to study the re-construction of knowledge graphs
usingmetadata representationmodels with two different approaches.
We perform an empirical analysis using two KG construction sys-
tems and three triplestores, performing the re-construction with
four data sizes in four different representations: RDF-star, Standard
Reification, N-Ary Relationships and Named Graphs. Our results
show that KG construction engines in general are more scalable,
almost independently on the representation. Triplestores perform
best for small data sizes. However, their performance is more de-
pendent on the source representation (in the WHERE clause) and the
target representation (in the CONSTRUCT clause). Both RDF-star and
NamedGraphs demonstrate that they are suitable as target represen-
tation. They present a good performance in terms of time, but have
still limited technical support by both re-construction approaches.
Meanwhile, Standard Reification and N-Ary Relationships, with
poorer performance, are supported by all known re-construction
engines. Independently on the re-construction approach and repre-
sentation, it is possible to interchange data among representations
without information loss.

With this study, we aim to provide a better understanding of
re-constructing knowledge graphs with metadata representations,
along with the relevant aspects to consider. We discuss the impor-
tance of broadening research on the CONSTRUCT clause regarding
query optimization and implementation in different triplestores.

In the future, we plan on widening the study of KG modifications
and their impact in re-construction. We limit the presented work
to changes from one metadata representation to another represen-
tation, motivated by different current use cases. Moreover, it is
unsure if there is a differential impact coming from the number
of reified triples in the graph, or from the nature of their value.
Additional changes usually present in KG evolution force their re-
construction, with potential additional nuances not discovered so
far, which opens the door to future analysis.
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