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ABSTRACT
SHACL shapes describe the constraints of RDF subgraphs which
are constructed from heterogeneous data, such as RDBs, JSONs,
XMLs, etc. These heterogeneous data often already have constraints
defined in their schemas, e.g., JSON Schema for JSON or XSD for
XML, but this information is ignored when the RDF graph is con-
structed, as there are currently not many works that translate such
schemas into SHACL. In this paper, we focus on the incorporation
of XSD constraints for XML data sources in SHACL shapes. We de-
fine a translation from XSD to SHACL, and provide a corresponding
system. We compare our solution with XMLSchema2ShEx which
translates XSD constraints to ShEx and validate our solution against
two use cases. Our solution provides the desired SHACL shapes in
a reasonable time. This allows us to automatically derive SHACL
shapes for some original raw data without any manual effort.

CCS CONCEPTS
• Information systems→ Semanticweb description languages;
• Computing methodologies→ Knowledge representation and
reasoning; • Software and its engineering→ Constraints.
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1 INTRODUCTION
Shape constraint languages, such as Shapes Constraint Language
(SHACL) [13] and the Shapes Expression language (ShEx) [14],
were proposed to validate RDF graphs against a set of constraints.
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Different methods have been considered so far to define shapes for
an RDF graph. Such shapes may be manually, e.g., for RINF or TED
(see Section 5.2), or automatically generated. In the latter case, the
SHACL shapes may be derived from RDF graphs [7–9, 15, 16, 18],
ontologies [2, 11], or mapping rules that define how the RDF graph
should be constructed from some raw data [4].

However, while these RDF graphs are often derived from raw
data [21], e.g., CSV, XML, or JSON, and these raw data may already
have constraints defined in their schema, e.g., SQL [12] for relational
databases, XSD [6] for XML, or JSON Schema [23] for JSON, these
constraints are usually ignored when the RDF graph is constructed.
Thus far, most of the solutions for automated creation of constraints
for RDF graphs do not leverage the schema and constraints of
the raw data from which the RDF graphs are derived. Garcia and
Labra-Gayo [10] proposed a method to translate the constraints
of the XSD to ShEx. Nonetheless, even though it paves the way
for a novel research area, it comes with various limitations and
proves inadequate in more intricate scenarios. Thapa and Giese [19,
20] proposed a source-to-target rewriting of SQL constraints to
SHACL constraints. However, their solution complements the direct
mapping recommendation [1] of relational databases to RDF which
is not as frequently used to construct RDF graphs from raw data.

In this work, we investigate a method to preserve the already ex-
isting constraints defined in XSD of the raw XML data from which
an RDF graph is derived. We describe our translation algorithm and
provide an open-source implementation of our translation mecha-
nism. Our objective is to streamline the construction of RDF graphs
and the corresponding SHACL shapes. We compare XSD2SHACL
with XMLSchema2ShEx [10], and apply our solution to two real-
world use cases to validate that our solution is applicable in more
intrinsic real-world use cases. With our work, we aim to reduce the
effort to create SHACL shapes and minimize the time needed for
defining constraints once the RDF graph is already constructed or
even before the RDF graph is constructed.

Contributions.Our contributions can be summarized as follows:
(i) a translation from XSD to SHACL; (ii) XSD2SHACL1, an open
source system that implements the translation; (iii) a comparison
of XSD2SHACL and XMLSchema2ShEx; and (iv) its validation in
two real-world use cases: ERA-RINF and TED.

The paper is organized as follows: In Section 2 we describe pre-
liminaries and related works, in Section 3 we describe in detail

1https://github.com/dtai-kg/XSD2SHACL
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the translation of the XSD into SHACL, and in Section 4 we intro-
duce our implementation: XSD2SHACL. In Section 5, we compare
XSD2SHACL with XMLSchema2ShEx, and validate our solution
against two real-world use cases. In Section 6, we conclude our
paper and outline possible future directions.

2 PRELIMINARIES AND RELATEDWORK
In this section, we introduce background knowledge on XSD and
SHACL required to follow this paper (Section 2.1) and explain the
related work on the generation of constraints for RDF (Section 2.2).

2.1 Preliminaries
In this subsection, we summarize the concepts of XSD and SHACL.

XSD. The XML Schema Definition Language (XSD) [6] is a W3C-
recommended language for describing the XML document using a
set of declarations and definitions [22]. Declarations (e.g., Listing
2, line 1) describe the element and attribute (e.g., Listing 1, line
1) that may appear in an instance document (i.e. XML). Instance
documents model elements using a parent-child relationship. For
example, in Listing 1, the student element could contain a grade
child element. Hence, in Listing 2, its XSD defines it as an element
declaration with student as name associated with a complex type
definition that contains the grade child element declaration.

Type definitions can be global or local. A globally defined type
(e.g., Listing 2, lines 3-16) is named and can be referred to by any
other element and attribute declarations, whereas a locally defined
type (e.g., Listing 2, lines 7-12) is anonymous and scoped to the defi-
nition or declaration that contains it. Type definitions can be simple
or complex. Simple-type elements only contain character data, (e.g.,
Listing 1, line 2), while complex-type elements contain character
data, attributes, or child elements. (e.g., Listing 1, line 1). Simple
type definitions can be built-in (e.g., xs:string) or user-defined
(e.g., Listing 2, lines 7-12). Complex type definitions have different
types of content, where simple content (e.g., xs:simpleContent)
and mixed content (e.g., attribute mixed=“true”) allows character
data, and element-only content and empty-content do not.

Attributes (e.g., minOccurs) within the declarations and defini-
tions addmore constraints.Unprefixed names (e.g., name=“student”)
of globally defined components belong to a particular namespace
defined by the attribute targetNamespace. If one of the attributes
elementFormDefault or attributeFormDefault is set to “quali-
fied” or the attribute formwithin the declaration is set to “qualified”,
the unprefixed names of the locally defined element or attribute
declaration will also be included in the namespace.

SHACL. Shapes Constraint Language (SHACL) [13], a W3C rec-
ommendation, describes how to validate RDF graphs against a
set of constraints in shapes. Shapes can be categorized into node
shapes that cannot contain property path and property shapes that
are required to contain a property path. Target declarations (e.g.,
sh:targetClass) are used to produce focus nodes as the input of
the validator and are optional for all shapes. The value of a prop-
erty path (i.e. sh:path) should be the predicate in RDF graphs to
reach the object value from the focus node for validation purposes.
For example, in Listing 3, the node shape may not have a target
declaration (lines 4-7), but the property shapes need to define a
property path (see sh:path in lines 11, 16, 20).

SHACL has a set of built-in core constraint components to vali-
date nodes targeted by a shape, e.g., value type, cardinality, value
range, etc. SHACL embodies the reference relationships between
shapes through sh:property and sh:node to indicate that the
current node must conform to the referenced shape as well. For ex-
ample, in Listing 3, a node shape with sh:targetClass :student
(lines 1-2) references another node shape using sh:node, and the
referenced node shape uses sh:property to reference a property
shape with sh:path :grade (line 6), to define that :student in-
stances need to conform the :grade property shape.

2.2 Related work
Limited works generate RDF shapes from the schema and con-
straints of raw data. Most of the previous works are focused on
deriving SHACL shapes from RDF graphs, ontologies, and map-
ping rules that define how the RDF graph should be constructed.
Deriving shapes from RDF graphs [7–9, 15, 16, 18] aligns closely
with the target validation graphs, but the computational burden is
contingent upon the data scale. In contrast, deriving shapes from
ontologies [2, 11] is independent of the data scale, resembling with
the raw data schema, but is confined to deriving constraints within
the defined ontology. Deriving shapes from mapping rules (e.g.,
[4] which leverages on RML [5]) captures the implied constraints
within the mapping rules, but is limited to the ones described by
the mapping language, e.g., if a mapping rule defines the data type,
then this data type is considered as a constraint for the RDF graph.

Garcia and Labra-Gayo [10] proposed XMLSchema2ShEx, a sys-
tem that converts XSD to ShEx. They treat the element declaration
as the triple predicate and object, and convert it into triple con-
straints where the predicate is the name of the declaration. They ex-
tend this to attribute declarations due to the absence of the attribute
concept in the RDF model. Such conversions are aligned with RDF
where all XML element names are used as properties in the pred-
icate position, e.g., given <student><id>r001</id></student>,
the constructed RDF would be :student1:student [:id "r001"].
However, this is not how this XML would be intuitively modeled
in RDF, as the name of the element containing sub-elements could
be employed as the class in the object position, e.g., :student1 a
:student; :id "r001". Their system, XMLSchema2ShEx2 covers
14 XSD components, but only generates valid ShEx shapes for 7 of
them. Last, it also comes with even more limitations as it cannot
handle input XSD containing unsupported components.

Thapa and Giese [19] proposed a source-to-target semantics pre-
serving rewriting of SQL constraints on the direct mapping [1] to
SHACL constraints to construct the RDF graph while preserving
integrity constraints information. Thapa and Giese [20] further in-
troduce a constraint rewriting for relational to RDF mappings, such
as R2RML [3], to convert SQL constraints to SHACL constraints,
that better aligns the SHACL shapes with the RDF graph.

1 <student nationality="BE">

2 <id>r001<id/>

3 <grade>18<grade/>

4 <student>

Listing 1: Example XML

2 ,https://github.com/herminiogg/XMLSchema2ShEx
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1 <xs:element name="student" type="StudentType"/>

2

3 <xs:complexType name="StudentType">

4 <xs:all>

5 <xs:element name="id" type="xs:string"/>

6 <xs:element name="grade">

7 <xs:simpleType>

8 <xs:restriction base="xs:integer">

9 <xs:minInclusive value="0"/>

10 <xs:maxInclusive value="20"/>

11 </xs:restriction>

12 </xs:simpleType>

13 </xs:element>

14 </xs:all>

15 <xs:attribute name="nationality" type="xs:string"/>

16 </xs:complexType>

Listing 2: Example XSD

3 TRANSLATION
In this section, we introduce our translation from XSD to SHACL.
We first explain how we preserve the parent-child hierarchy of
XSD into the reference relationships in SHACL (Section 3.1). This
involves the generation of node and property shapes, target declara-
tions, and property paths from element and attribute declarations,
and type definitions. Then we present how we generate SHACL
core constraints from XSD facets and attributes (Section 3.2). It is
important to note that we retain the namespaces for the names of el-
ements and attribute declarations that are either explicitly qualified
by a prefix or implicitly by the defined targetNamespace.

3.1 Components Hierarchy Preservation
Both XSD and SHACL delineate the relationship among their com-
ponents through hierarchical structures (parent-child or reference).
To preserve the hierarchical relationships during the translation
(e.g., a student should have a grade), we rely on the type of decla-
ration to generate a shape and establish the reference relationships
between translated shapes using sh:node and sh:property.

Element and attribute declarations.We translate element and
attribute declarations to node or property shapes according to their
type definitions, as shown in Table 1. Element declarations asso-
ciated with simple type definitions together with all attribute dec-
larations are translated into property shapes. In contrast, element
declarations associated with complex type definitions are translated
into node shapes. If the type content is simple or mixed, we generate
one more property shape and incorporate the constraints translated
from its restriction and facets within the shape. The name of
the declaration becomes the value of a sh:targetClass within node
shapes and of a sh:path within property shapes.

The element declaration associated with a local complex type
definition uses sh:property to reference its child declarations that
are translated into property shapes, and sh:node to reference its
child declarations or definitions that are translated into node shapes.
However, if that is globally defined, it uses sh:node to reference the
node shape translated from this complex type definition. For exam-
ple, in Listing 3, the student element declaration with a complex
type definition StudentType is translated into a node shape with

its name as the value of sh:targetClass (lines 1-2), the grade
element declaration with a simple type definition is translated into
a property shape with sh:path (lines 9-12), and the student’s node
shape references its type’s node shape using sh:node (line 2).

1 <NS/student> a sh:NodeShape ; sh:targetClass :student ;

2 sh:node <NS/StudentType> ; sh:name "student" .

3

4 <NS/studentType> a sh:NodeShape ; sh:name "StudentType" ;

5 sh:property <PS/StudentType/id>,

6 <PS/StudentType/grade>,

7 <PS/StudentType/nationality> .

8

9 <PS/StudentType/grade> a sh:PropertyShape ;

10 sh:datatype xs:integer ; sh:name "grade" ;

11 sh:minCount 1 ; sh:maxCount 1 ; sh:path :grade;

12 sh:minInclusive 0 ; sh:maxInclusive 20 .

13

14 <PS/StudentType/id> a sh:PropertyShape ;

15 sh:datatype xs:string ; sh:name "id" ;

16 sh:minCount 1 ; sh:maxCount 1 ; sh:path :id .

17

18 <PS/StudentType/nationality> a sh:PropertyShape ;

19 sh:datatype xs:string ; sh:name "nationality" ;

20 sh:path :nationality .

Listing 3: Example SHACL shapes

Type definition. We generate a node shape without a target
for the global complex type definition, thereby enhancing the
compactness of shapes through repeatedly referencing the gen-
erated shape by sh:node. For example, supposed that in Listing 2,
there is another element declaration graduate, also associated with
StudentType in addition to student, then we only need to refer-
ence the generated node shape of StudentType (Listing 3, lines 4-7)
from student’s shape and graduate’s shape through sh:node (e.g.,
line 2). The generated node shape from the definition references
the shapes translated from the child declarations (e.g., id, grade,
nationality) within the definition using sh:node if the child’s
shape is a node shape or sh:property if that is a property shape.

We directly translate the child components of local complex type
definitions and simple type definitions and incorporate the gener-
ated shapes or constraints into its associated declaration’s shape.
For example, supposed that the StudentType is locally defined
and associated with the student declaration, then the referenced
property shapes (Listing 3, lines 5-7) will be directly referenced by
the student’s node shape instead of generating a new shape for
StudentType. For references (e.g., <xs:element ref=“student”>)
within a definition, we directly reference the corresponding shape
that is translated from the referenced declaration (e.g., <xs:element
name=“student”>) from the definition’s shape. Last, we translate
globally declared attributeGroup and group, as the global com-
plex type definition as shown in Table 1.

Statements in the type definition.We translate various state-
ments within type definitions following Table 1, where simple type
can define union and list, and complex type definition can define
all, sequence, choice, group, and attributeGroup. The union
(e.g., <xs:union memberTypes="Type1 Type2") introduces a sh:or
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Table 1: Translation from XSD components to SHACL shapes

XML Schema SHACL

Complex type
element-only content & empty content a sh:NodeShape
<xs:element name="N "> sh:targetClass :N
<xs:element name="N " type="C"/>
Complex type a sh:NodeShape
simple content & mixed content sh:targetClass :N
<xs:element name="N "> a sh:PropertyShape
<xs:element name="N " type="C"/> sh:path :N
Simple type: user-defined
<xs:element name="N ">
<xs:attribute name="N "> a sh:PropertyShape
<xs:element name="N " type="C"/> sh:path :N
<xs:attribute name="N " type="C"/>
Simple type: built-in a sh:PropertyShape
<xs:element name="N " type="C"/> sh:path :N
<xs:attribute name="N " type="C"/> sh:datatype C

<xs:complexType name="N ">
a sh:NodeShape<xs:group name="N ">

<xs:attributeGroup name="N ">
xs:sequence sh:order

xs:choice sh:xone

xs:union sh:or

xs:annotation sh:description

within the corresponding property shape translated from the decla-
ration that defines it followed by an RDF list that contains several
sets of constraints translated from the unioned types. We do not
translate list since SHACL does not support list validation. We
do not translate all as it defines a set of unordered elements and
shapes are unordered by default. The sequence introduces the
sh:order (e.g., sh:order 1) within the property shapes translated
from its child element declarations to indicate the relative order.
The choice introduces the sh:xone in the corresponding node
shape translated from its parent definition to reference the shapes
translated from its child element declarations (e.g., node_shape
sh:xone (s_1 s_2).). For group and attributeGroup with an
attribute ref, we use sh:node to reference the node shape trans-
lated from the referenced group declaration.

3.2 Core Constraints Generation
In this subsection, we present the correspondence between XSD
components and SHACL constraints (Tables 2 and 3).

Extension and restriction. The extension and restriction
within a complex type definition are translated according to their
base type. If their base type is a complex type definition, we use
sh:node to reference that base type’s node shape from this defi-
nition’s node shape. For example, in Listing 2, supposed that the
all group within the StudentType is extended by another global
complex type definition FamilyType with two child element decla-
rations phoneNumber and address within all. Then we reference
the node shape translated from FamilyType using sh:node from
the StudentType’s node shape to specify that a studentmay have
an address and phone number, besides an id and grade score. When
the base type is a built-in type, we define a sh:datatype constraint

Table 2: Correspondences from XSD extension, restriction,
and facets to SHACL constraints

XML Schema SHACL

Complex type C
<xs:restriction base="C"/>

sh:node<xs:extension base="C">
Built-in simple type C
<xs:extension base="C"/>

sh:datatype C<xs:restriction base="C"/>
<xs:pattern value="C"/> sh:pattern C
<xs:minLength value="C"/> sh:minLength C
<xs:maxLength value="C"/> sh:maxLength C

<xs:Length value="C"/> sh:minLength C
sh:maxLength C

<xs:minInclusive value="C"/> sh:minInclusive C
<xs:maxInclusive value="C"/> sh:maxInclusive C
<xs:minExclusive value="C"/> sh:minExclusive C
<xs:maxExclusive value="C"/> sh:maxInclusive C
<xs:enumeration value="C1"/>

sh:in (C1, C2)<xs:enumeration value="C2"/>

with the built-in type as value. For example, assuming that a simple
content complex definition studentType contains an extension
with xs:integer as base, then we translate it to sh:datatype and
incorporate it into the corresponding property shape.

We translate restriction within simple type definition accord-
ing to its base type. If the type is a user-defined simple type, we
incorporate the constraints translated from the user-defined type
into the shape translated from the declaration that defines this
definition. For example, supposed that the simple type definition
(Listing 2, lines 7-12) has another user-defined definition with facets
pattern and maxInclusive 100 as its base type, thenwe add trans-
lated sh:pattern and sh:maxInclusive to the grade’s shape but
the sh:maxInclusive 100 will be override by sh:maxInclusive
20 later. If the type is a built-in type (e.g., xs:integer), then we
incorporate a sh:datatype within the shape translated from the
declaration that defines it (e.g. Listing 3, line 10).

Facets.We translate the facets within a restriction into cor-
responding SHACL constraints following Table 2. Boundary facets,
such as minExclusive, are translated into the corresponding value
range constraints, such as sh:minExclusive. The length facets
of minLength or maxLength, is translated to sh:minLength or
sh:maxLength. The length facet of Length, with no aligned con-
straint in SHACL, is translated to sh:minLength and sh:maxLength
with the same value to specify the unique range. For enumeration
facets, we translate all those within the same restriction to a
sh:in followed by an RDF list containing all enumerated values.
For facet of pattern, we translate it to sh:pattern. We skip trans-
lating the facets of assertion, explicitTimezone, whiteSpace,
totalDigits, and fractionDigits that do not have correspond-
ing constraints in SHACL. We incorporate these translated con-
straints into the property shape translated from the declaration
that defines the type definition that contains this restriction as
its type. For example, in Listing 2 and Listing 3, we translate the
facets within the simple type definition (lines 7-12) that is locally
defined within grade declaration, such as minInclusive, to the
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Table 3: Correspondences from attributes to constraints

XML Schema SHACL

Local element declaration
minOccurs="C" default to 1 sh:minCount C
maxOccurs="C" default to 1 sh:maxCount C
maxOccurs="unbounded" –
Local attribute declaration

use="required" sh:minCount 1
sh:maxCount 1

use="optional" sh:minCount 0
sh:maxCount 1

use="prohibited" sh:minCount 0
sh:maxCount 0

default="C" sh:defaultValue C
fixed="C" sh:in ( C )
name="N " sh:name N

corresponding constraints such as sh:minInclusive, and incorpo-
rate them into the grade’s property shape.

Attributes. The translations of attributes defined in element
declarations and attribute declarations are shown in Table 3. For
Occurrence attribute minOccurs and maxOccus within local ele-
ment declaration, we translate them to the cardinality constraints
sh:minCount and sh:maxCount, The default value for both oc-
currence attributes is 1. For the use attribute, we translate it to
sh:minCount 1 and sh:maxCount 1 if its value is "required", to
sh:minCount 0 and sh:maxCount 1 if its value is "optional", and
to sh:minCount 0 and sh:maxCount 0 if its value is "prohibited".
We translate default to sh:defaultValue, and fixed to sh:in
followed by an RDF list contains the value of fixed. The translated
constraints will also be incorporated into the shape deriving from
the element or attribute declaration that defines the attributes.

4 XSD2SHACL IMPLEMENTATION
In this section, we present the pseudocode (Algorithm 1) of the
implementation1 for our XSD to SHACL translation.

The input XSD file, including all relevant files associated through
include and import, are recursively parsed to a tree, where the
names involving different targetNamespace in import will be con-
verted to explicit prefixed names, then the tree root, initialized
empty graph, and 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 shape (𝑁𝑜𝑛𝑒) are fed into the 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒
function for translating its children through the loop (line 8).

For each element and attribute reference, the shape translated
from the referenced declaration becomes the current shape (lines
10-11). For each element and attribute declaration associated with a
simple type definition, we create a property shape with its name as
sh:path, incorporate the constraints translated from its attributes
and type definition, and then end the iteration (lines 12-17). For each
element declaration associated with a complex type definition, we
create a node shape with its name as sh:targetClass, add sh:node
to reference the node shape translated from its type definition if it
is global, and add possible extra property shape as Table 1 shows
(lines 18-21). If the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 shape is not 𝑁𝑜𝑛𝑒 , which signifies an
inherent hierarchical association between the two shapes, we use
sh:node or sh:property to reference the current shape from the

Algorithm 1: Pseudocode for translating XSD to SHACL
1 Function XSD2SHACL(𝑋𝑆𝐷_𝑓 𝑖𝑙𝑒):
2 𝑡𝑟𝑒𝑒 ← parse(𝑋𝑆𝐷_𝑓 𝑖𝑙𝑒)
3 𝑡𝑟𝑒𝑒 ← recursiveParse(𝑡𝑟𝑒𝑒 , 𝑡𝑟𝑒𝑒.𝑖𝑛𝑐𝑙𝑢𝑑𝑒 , 𝑡𝑟𝑒𝑒.𝑖𝑚𝑝𝑜𝑟𝑡 )
4 𝑆 ← empty graph
5 𝑆 ← translate(𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡 , 𝑆 , 𝑁𝑜𝑛𝑒)
6 return 𝑆

7 Function translate(𝑒𝑙𝑒𝑚𝑒𝑛𝑡 , 𝑆 , 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠ℎ𝑎𝑝𝑒):
8 for 𝑐ℎ𝑖𝑙𝑑 in 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 do
9 if isElement(child) or isAttribute(child) then
10 if isRef(child) then
11 𝑠 ← redirect(𝑐ℎ𝑖𝑙𝑑.𝑟𝑒 𝑓 )
12 else if isSimple(child) then
13 𝑠 ← createPropertyShape(path, 𝑐ℎ𝑖𝑙𝑑.𝑛𝑎𝑚𝑒)
14 𝑠 .addConstraints(𝑐ℎ𝑖𝑙𝑑.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠)
15 𝑠 .addConstraints(find(𝑐ℎ𝑖𝑙𝑑.𝑡𝑦𝑝𝑒))
16 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠ℎ𝑎𝑝𝑒 ← None
17 continue

18 else if isComplex(𝑐ℎ𝑖𝑙𝑑) then
19 𝑠 ← createNodeShape(target, 𝑐ℎ𝑖𝑙𝑑.𝑛𝑎𝑚𝑒)
20 𝑠 .addNode(redirect(𝑐ℎ𝑖𝑙𝑑.𝑡𝑦𝑝𝑒))
21 𝑠 .addExtraShape(contentType(𝑐ℎ𝑖𝑙𝑑.𝑡𝑦𝑝𝑒))
22 if previous_shape is not None then
23 𝑠 .addNodeOrProperty(shapetype(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠ℎ𝑎𝑝𝑒))

24 else if isGlobalComplexType(𝑐ℎ𝑖𝑙𝑑) or isGroup(𝑐ℎ𝑖𝑙𝑑) or
isAttributeGroup(𝑐ℎ𝑖𝑙𝑑) then

25 s← createNodeShape(𝑐ℎ𝑖𝑙𝑑)
26 else
27 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠ℎ𝑎𝑝𝑒 .addConstraints(𝑐ℎ𝑖𝑙𝑑)
28 translate(𝑐ℎ𝑖𝑙𝑑 , 𝑆 , 𝑠)
29 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠ℎ𝑎𝑝𝑒 ← None
30 return 𝑆

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 shape (lines 22-23). For each global complex type defini-
tion, group, and attribute group, we create a node shape without
sh:targetClass (lines 24-25). Components that do not involve
creating new shapes and are not in a simple type definition are
translated to corresponding constraints following Section 3, and
are incorporated into the 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 shape (line 27). Subsequently,
we reintroduce the current child node into the 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 function,
thereby ensuring continued traversal through its potential child
nodes (line 28). Eventually, the resulting SHACL shape is returned
as the final outcome.

5 VALIDATION
We validate our translation against the shapes from other transla-
tions (Section 5.1) and human-defined SHACL shapes (Section 5.2).
All resources are published with the code1.

5.1 XSD2SHACL Vs. XMLSchema2ShEx
We compare our implementation with XMLSchema2ShEx2 [10]. We
assess their coverage across various XSD and SHACL components,
and examine the similarities and differences of the produced shapes.
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Table 4: Supported XSD components of XMLSchema2ShEx
and XSD2SHACL. The “*” indicates that the generated ShEx
constraint cannot be converted to SHACL using Shaclex.

XMLSchema2ShEx XSD2SHACL
all, attribute,
complexType, element,
enumeration*, fixed,*
minOccurs,
maxOccurs,
maxExclusive*,
maxInclusive*,
minExclusive*,
minInclusive*,
pattern*, simpleType

all, annotation, appinfo, attribute,
attributeGroup, complexContent,
choice, complexType, default,
element, documentation, enumeration,
extension, fixed, group, import,
include, minOccurs, maxOccurs, length,
maxExclusive, maxInclusive, maxLength,
minExclusive, minInclusive, minLength,
pattern, sequence, simpleContent,
simpleType, union, use

Methodology.We compare the two implementations on different
examples; we indicatively discuss the purchase order schema ex-
ample from the XML Schema specification3. We generated SHACL
shapes with XSD2SHACL and ShEx shapes with XMLSchema-
2ShEx. We used Shaclex4 to convert the ShEx shapes generated
by XMLSchema2ShEx to SHACL. Then we observe their similari-
ties and differences. Originally, the XMLSchema2ShEx could not
produce results for the complete example XSD file, due to certain
components that are not supported as confirmed by the authors5.

Therefore, we divided this purchase order schema example to
more fine-grained test cases so that XMLSchema2ShEx can produce
shapes. Components within the example, e.g., complexType, are
extracted separately as individual cases with the smallest combined
unit that can be translated as target. For example, if the schema
contains multiple components, we extract a complex type definition,
an element declaration with a built-in, user-defined or complex
type definition, etc., as independent cases. Components, such as the
attributeGroup, that are not included in the example are added
for completeness. An extract of the XSD file is in Listing 4 and an
extract of the shapes produced by XMLSchema2ShEx+Shaclex and
XSD2SHACL in Listings 5 and 6 respectively.

Results. The comparative evaluation reveals that our imple-
mentation exhibits a broader coverage of both XSD and SHACL
components (Table 4). Seven of the XSD components are fully sup-
ported by XMLSchema2ShEx. Another seven components are cov-
ered but produce ShEx shapes with syntax errors which cannot
be converted to SHACL using Shaclex. XSD2SHACL successfully
generates SHACL shapes on all cases and with valid syntax.

Both implementations generate equivalent property shapes and
constraints for declarations that are associated with simple type
definitions. For example, in Listing 5 and Listing 6, both shapes
contain the same property shapes translated from productName
and USPrice, while XSD2SHACL generates one more sh:name.

Shapes translated from declarations with complex type defi-
nitions are not equivalent due to the different assumptions that
XMLSchema-2ShEx used as explained in Section 2.2. For example,
given the XSD in Listing 4, XMLSchema2ShEx+Shaclex translates
the item declaration associated with a complex type definition to a
3https://www.w3.org/TR/xmlschema-0/#POSchema
4https://github.com/weso/shaclex
5https://github.com/herminiogg/XMLSchema2ShEx/issues/7

property shape with :item as sh:path (Listing 5, line 2), and refer-
ences the node shape generated from the complex type definition.
XSD2SHACL translates item declaration into a node shape with
:item as sh:targetClass (Listing 6, lines 6-10), and references
the property shapes translated from the child declarations (lines
8-9). In addition, XMLSchema2ShEx+Shaclex does not translate the
element declaration items while XSD2SHACL covers (lines 1-3).

1 <xs:element name="items" type="Items"/>

2 <xs:complexType name="Items">

3 <xs:all>

4 <xs:element name="item" minOccurs="0" maxOccurs="unbounded">

5 <xs:complexType>

6 <xs:all>

7 <xs:element name="productName" type="xs:string"/>

8 <xs:element name="USPrice" type="xs:decimal"/>

9 </xs:all>

10 </xs:complexType>

11 </xs:element>

12 </xs:all>

13 </xs:complexType>

Listing 4: Example XSD

1 <Items> a sh:NodeShape ;

2 sh:property [ sh:path :item ; sh:node <item> ] .

3 <item> a sh:NodeShape ;

4 sh:property [ sh:path :productName ;

5 sh:minCount 1 ; sh:maxCount 1 ;

6 sh:datatype xs:string ] ;

7 sh:property [ sh:path :USPrice ;

8 sh:minCount 1 ; sh:maxCount 1 ;

9 sh:datatype xs:decimal ] .

Listing 5: SHACL shapes from XMLSchema2ShEx & Shaclex

1 <NS/items> a sh:NodeShape ;

2 sh:nodeKind sh:IRI ; sh:node <NS/Items> ;

3 sh:targetClass :items ; sh:name "items" .

4 <NS/Items> a sh:NodeShape ;

5 sh:node <NS/Items/item> ; sh:name "Items" .

6 <NS/Items/item> a sh:NodeShape ;

7 sh:nodeKind sh:IRI ;

8 sh:property <PS/Items/item/USPrice>,

9 <PS/Items/item/productName> ;

10 sh:targetClass :item ; sh:name "item" .

11 <PS/Items/item/USPrice> a sh:PropertyShape ;

12 sh:path :USPrice ;

13 sh:minCount 1 ; sh:maxCount 1 ;

14 sh:datatype xsd:decimal ; sh:name "USPrice" .

15 <PS/Items/item/productName> a sh:PropertyShape ;

16 sh:path :productName ;

17 sh:minCount 1 ; sh:maxCount 1 ;

18 sh:datatype xsd:string ; sh:name "productName" .

Listing 6: SHACL shapes from XSD2SHACL

5.2 RINF and TED Use Cases
We conduct an analysis on two use cases by comparing our gen-
erated SHACL shapes with human-created SHACL shapes. We

https://www.w3.org/TR/xmlschema-0/#POSchema
https://github.com/herminiogg/XMLSchema2ShEx/issues/7
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Table 5: Validation results on the RINF and TED use cases

Use Case Target Declaration Property Path
𝐶𝑇 𝑅/𝑇 𝑅/𝑇 ′ 𝐶𝑃 𝑅/𝑃 𝑅/𝑃 ′

RINF
contact-line 1 1/1 1/1 8 8/8 10/10
etcs-levels 1 1/1 1/1 2 2/2 3/3
meso-net-e 1 1/1 1/1 2 2/2 2/2
meso-net-r 1 1/1 1/1 2 2/2 2/2
op-tracks 1 1/1 1/1 11 11/11 13/13
operational 2 2/2 5/5 13 13/13 23/23
platforms 1 1/1 1/1 7 7/7 9/9
sections-of 1 1/1 1/1 9 9/9 14/14
sidings 1 1/1 1/1 16 16/16 18/18
sol-tracks 1 1/2 1/1 95 95/107 110/110
train-detect 1 1/1 1/1 24 24/26 30/30
tunnels 1 1/1 3/3 13 13/14 21/21

TED
F03 50 50/278 50/50 129 132/493 144/144
F06 50 50/278 50/50 129 134/493 144/144
F13 50 50/278 50/50 127 132/493 142/142

validate our translation and implementation on two real-world use
cases in which the RDF graphs are constructed using RML map-
pings [5], and the XSD and SHACL shapes are available: Register
of Infrastructure (RINF)6 and Tenders Electronic Daily (TED)7.

RINF is a base registry maintained by the European Union
Agency for Railways (ERA)8. We use the version 1.5 of RINF XSD
Schema9, and version 2.6.3 of the SHACL shapes [17]. The Publica-
tions Office of the European Union publishes public procurement
notices on the TED website using pre-defined XML Schema, and
we use the Publication XSD10 and SHACL shapes11. In both cases,
the SHACL shapes are defined without considering the XSD.

Methodology.We employ the XSD files as input for XSD2SHACL
to generate preliminary SHACL shapes. As the human-defined SHACL
shapes use custom classes and properties, they cannot be directly
compared. Thus, we post-adjust the preliminary SHACL shapes to
align the classes and properties to the custom ones, and align the
constraints to the target RDF data yielding the final post-adjusted
SHACL shapes used for the comparison. To achieve this, we lever-
age the available RML mappings1 [5] of the two use cases, which
describes how classes and properties are applied to raw data to
construct RDF graphs. We replace the classes and properties in the
preliminary SHACL shapes with those in the mappings. Then we
conduct the comparison based on diverse metrics.

Metrics.We use the number of common target classes 𝐶𝑇 and
common property paths𝐶𝑃 , the proportion of the number of target
classes and property paths that are declared in RML (𝑅/𝑇 , 𝑅/𝑇 ′,
𝑅/𝑃 and 𝑅/𝑃 ′), and the observed constraint richness as metrics.
Regarding common target classes, given the human-defined shapes
𝑆 with a set of target classes 𝑇𝑆 and post-adjusted shapes 𝑆 ′ with

6https://www.rinf-ch.ch
7https://ted.europa.eu
8https://www.era.europa.eu/
9https://www.era.europa.eu/domains/registers/rinf_en
10https://op.europa.eu/en/web/eu-vocabularies/e-procurement/tedschemas
11https://github.com/OP-TED/ted-rdf-mapping

𝑇𝑆 ′ , we have 𝐶𝑇 = |𝑇𝑆 ∩𝑇𝑆 ′ |. Given the declared classes 𝑉 in RML
mappings, we have the proportion of human-defined target classes
that are also in 𝑉 as 𝑅/𝑇 = |𝑇𝑆 ∩𝑉 |/|𝑇𝑆 |. For 𝑆 ′, we have 𝑅/𝑇 ′ =
|𝑇𝑆 ′ ∩ 𝑉 |/|𝑇 ′𝑆 |. Regarding common property paths, given a set of
property paths 𝑃𝑆 in 𝑆 and 𝑃𝑆 ′ in 𝑆 ′, we have the 𝐶𝑃 = |𝑃𝑆 ∩ 𝑃𝑆 ′ |,
𝑅/𝑃 = |𝑃𝑆 ∩𝑉 |/|𝑃𝑆 |, and 𝑅/𝑃 ′ = |𝑃𝑆 ′ ∩𝑉 |/|𝑃 ′𝑆 |.

RINF results. XSD2SHACL generates SHACL shapes compa-
rable to the human-defined SHACL shapes in the RINF use case
(Table 5). It covers all human-defined target classes (𝐶𝑇 ) across all
but 1 case and all human-defined property paths across 9 cases. In
the sol-tracks case (𝑅/𝑇 has value 1/2), the human-defined SHACL
shapes comprise 2 target classes, whereas only 1 of these appeared
in the RML mappings and our shapes. As the post-adjusted SHACL
shapes are based on the mappings, only classes and properties de-
clared in the mappings will appear in these shapes. This means that
some constraints could have been in the preliminary SHACL shapes
but were discarded during the post-adjustment, but also that, in
this case, the human-defined SHACL shapes include constraints for
RDF terms which do not appear in the RDF graph so far.

In some cases, the post-adjusted SHACL shapes have more target
classes than the human-defined (e.g., for the tunnels and operational).
In these cases, the human-defined target classes are all declared in
the RML mappings (e.g., 𝑅/𝑇 of 2/2 and 1/1 respectively), but they
cover fewer RML classes than the post-adjusted SHACL shapes (e.g.,
𝑅/𝑇 ′ of 5/5 and 3/3 respectively). Thus, the human-defined SHACL
shapes do not define constraints to validate part of the RDF graph.

Similarly, not all property shapes of the human-defined SHACL
shapes appear in the post-adjusted SHACL shapes as the correspond-
ing properties may not be declared in the RML mappings. For
example, in the case of sol-tracks, only 95 of the 107 human-defined
property paths are declared in the RML mappings, and, thus, the
post-adjusted SHACL shapes do not include constraints for these
human-defined property paths not declared in RML (e.g., 𝐶𝑃 of 95).

We observe that the node and property shapes include the same
cardinality and data type constraints. However, the SHACL shapes
produced by XSD2SHACL contain length-related constraints that
do not exist in the human-defined SHACL shapes. On the other hand,
the human-defined SHACL shapes contain pattern constraints that
the SHACL shapes produced by the XSD2SHACL do not have. This
divergence is primarily due to inconsistent versions of XSD and
human-defined SHACL shapes. While the XSD is legacy, the SHACL
shapes are defined according to the Application Guide v1.6.110,
which is updated compared to the XSD. Thus, the XSD contains
length-related but no pattern constraints.

Last, the human-defined SHACL shapes include sh:severity and
sh:message properties which could not be inferred from the XSD.

TED results. Human-defined SHACL shapes cover more target
classes and property paths than the post-adjusted SHACL shapes. The
significant disparity between 𝑇 and 𝑇 ′ necessitates an exploration
in the context of the RML mappings. Taking F03 as an example, the
𝑅/𝑇 of 50/278 indicates that out of the 278 human-defined target
classes, only 50 are declared in the RML mappings. The 𝑅/𝑇 ′ of
50/50 indicates that all of the 50 post-adjusted target classes are
declared in RML mappings, and the 𝐶𝑇 of 50 indicates that all of
those coincided with the human-defined target classes. Therefore,

https://www.rinf-ch.ch
https://ted.europa.eu
https://www.era.europa.eu/
https://www.era.europa.eu/domains/registers/rinf_en
https://op.europa.eu/en/web/eu-vocabularies/e-procurement/tedschemas
https://github.com/OP-TED/ted-rdf-mapping
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the post-adjusted SHACL shapes are also covered by the the human-
defined SHACL shapes, but the latter also contain constraints for
RDF terms that do not appear yet in the RDF graph.

In terms of common property paths, the human-defined prop-
erty paths are more than the property paths generated from the
XSD2SHACL because they refer to RDF constructed frommore data
sources than just the XML files. Take the F03 as an example, the𝐶𝑃

of 129 and 𝑅/𝑃 of 132/493 indicate that there are three properties de-
clared in the RML mappings but not covered by the SHACL shapes
produced by XSD2SHACL. These properties are defined within
rules associated with the CSV source. This also underscores the fact
that the target RDF data of the three human-defined property paths
are not derived from XML. Consequently, our inability to discern
these properties should not be perceived as a negative result.

Performance. While a performance evaluation is beyond the
scope of this paper, we indicatively report our system’s time perfor-
mance to demonstrate that results are produced in an acceptable
timeframe. Our system effectively translates XSD to 198 SHACL
shapes in less than 1 second for RINF which has 1 XSD file and
to 1,144 SHACL shapes in around 19 seconds for TED which is an
assembly of 30 XSD files. Thus, XSD2SHACL consistently exhibits
robust performance even for larger use cases.

Discussion. The SHACL shapes generated by XSD2SHACL are
comparable to the human-defined SHACL shapes to the extent we
can compare. On one hand, in RINF, the target declarations of the
human-defined SHACL shapes closely resemble the post-adjusted
SHACL shapes but the latter includes additional property paths,
encompassing all properties present in the RML mappings. On
the other hand, in TED, while the post-adjusted SHACL shapes en-
compass all target classes and property paths found in the RML
mappings, the human-defined SHACL shapes go well beyond the
target classes covered by the post-adjusted SHACL shapes. Although
the preliminary SHACL shapes may initially encompass more of the
human-defined SHACL shapes, some might have been eliminated
during the post-adjustment.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a translation from XSD to SHACL and
provide an algorithm which is implemented in the XSD2SHACL
system. The comparative experiments demonstrate that our trans-
lation covers more XSD components than XMLSchema2ShEx. The
validation experiments showcase our efficiency and effectiveness in
handling intricate real-world scenarios, outperforming the state-of-
the-art systems. We generate SHACL shapes that are comparable to
the human-created SHACL shapes, and delineate the disparities of
the two SHACL shapes. While there are disparities, the real-world
use cases still reveal the efficacy of our system. In conclusion, us-
ing legacy XSD, we could generate a draft valid version of SHACL
shapes that helps humans enhance and update them rather than
beginning anew. In the future, we will investigate generalizing the
post-adjustment method to more shapes generation approaches.
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