
Morph-Skyline: Virtual Ontology-Based
Data Access for Skyline Queries

1nd Marlene Goncalves
Computer Science and Information Technology

Universidad Simón Bolı́var
Caracas, Venezuela
mgoncalves@usb.ve

2nd David Chaves-Fraga
Ontology Engineering Group

Universidad Politécnica de Madrid
Boadilla del Monte, Madrid

dchaves@fi.upm.es

3rd Oscar Corcho
Ontology Engineering Group

Universidad Politécnica de Madrid
Boadilla del Monte, Madrid

ocorcho@fi.upm.es

Abstract—Skyline queries are being used in decision-making
applications to help stakeholders find the set of data that
satisfies certain criteria, whose weight may not be assigned
beforehand. Given the wide availability of heterogeneous datasets
that are being published following Open Data initiatives, com-
bining skyline queries with query processing approaches such
as Ontology-Based Data Access (OBDA), may help stakeholders
to improve their decisions exploiting and integrating multiple
and heterogeneous data sources. In this paper, we address the
problem of evaluating SPARQL skyline queries over an OBDA
approach. Our approach implements two different techniques:
rewriting skyline queries into SPARQL 1.0 and then translating
to SQL, or translating them directly into queries that can be
evaluated by the relational database. Our experimental results
suggest that the execution time can be reduced by up two orders
of magnitude in comparison to current approaches scaling up to
larger datasets while identifying precisely the skyline set.

Index Terms—Skyline, OBDA, Query translation, R2RML

I. INTRODUCTION

In databases, a skyline is defined as a set of tuples which
stand out among the others because they are of special
interest for a specific type of problem [1]. For instance, in
a database related to retail units in shopping centers, we
may be interested in understanding which are the retail units
where more people pass by and/or that have larger amounts
of shopping transactions per day and/or while being among
the smallest ones. From a more formal point of view, given
a dominance relationship in a multidimensional dataset, a
skyline is defined as the set of points that are not dominated
by any other, where a point is considered to dominate another
one if it is as good or better in all dimensions and better in at
least one dimension [2]. These queries are relevant in many
multi-criteria decision making applications [1]. They can help
stakeholders to make better decisions when multiple criteria
over data are expressed (e.g., footfall, shopping transactions).
More specifically, they are really relevant when stakeholders
can not predefine a score function based on these criteria, and
all of them are equally important.

Skyline queries have been widely studied in relational
databases (RDB) extending SQL with the skyline operator [2].
Exploiting the benefits of having a well designed RDB, includ-
ing typical constraints over its schema, different algorithms [1]
are proposed to efficiently obtain a high-quality skyline set
from an input query. In the context of the knowledge graphs,

extensions of the SPARQL query language to incorporate
user qualitative preferences have been also studied [3]–[5].
Qualitative preferences allow arbitrary comparisons between
the values in tuples while the skyline entails combinations
of totally ordered comparisons between these values. These
approaches do not provide a native operator over RDF but they
rely on query rewriting techniques in order to be compliant
with standard SPARQL and allowing its evaluation by any
RDF triplestore. Also, [6] presents a set of client-based sky-
line algorithms over knowledge graphs using standard query
interfaces, such as SPARQL endpoints and TPF (Triple Pattern
Fragments), with no control over how the knowledge graph
is stored. Although this means that skyline queries can be
executed over SPARQL endpoints, the lack of techniques that
exploit the data storage structures in triplestores to specifically
deal with the complexity of these queries can have a negative
impact over their evaluation. Thus, the performance of these
queries over RDF knowledge graphs is still low.

In this work, we are interested in enabling the evaluation of
SPARQL skyline queries over data that are not only available
in RDF, as in the aforementioned works, but in relational
databases. Ontology-Based Data Access (OBDA) has been
proposed to allow access to data according to an existing
ontology using a set of mapping rules [7], either by generating
materialized views (RDF files) [8] or by translating SPARQL
queries into queries that are supported by the underlying
source, which is known as virtualization [9], [10]. The latter
is specially relevant when a skyline query has to be evaluated
because: i) it ensures up to date results at the moment of the
execution, and ii) the skyline clause can be pushed down to
the underlying data management systems (e.g., an RDBMS)
exploiting the benefits of proposed skyline algorithms to
improve query performance and the quality of the result sets.

Problem Statement and Research Objective: In this paper,
we focus on the problem of evaluating SPARQL skyline
queries over a virtual OBDA approach. We are interested in de-
termining the feasibility of such type of query evaluation, un-
derstanding the correctness and completeness of our approach,
and then, determining whether its performance is adequate
in comparison with current skyline query approaches over
RDF. Approach: We describe Morph-Skyline, a virtual OBDA
approach for skyline queries. Based on the SPARQL-to-SQL



query translation approach defined in [11], Morph-Skyline
translates and optimizes skyline queries from SPARQL to SQL
by means of a set of R2RML mappings. The approach includes
two different algorithms: i) skyQT, which pushes down the
application of the skyline clause, delegating its treatment to
a physical operator of the RDBMS; ii) QRT, that rewrites a
SPARQL skyline query to the corresponding one in SPARQL
1.0 and then, translates it to SQL. Evaluation: We adapt the
benchmark for skyline queries defined in [2] and the TPC-H
benchmark presented in [12], with SPARQL queries of several
dimensionalities. This evaluation allows understanding the
impact that different data distributions, query dimensionalities,
and dataset sizes have on a SPARQL-to-SQL skyline query
evaluation. The results of the experiments suggest that all these
variables impact on the total query execution time and OBDA
approaches overcome native SPARQL methods up to two
orders of magnitude. Contributions: Our contributions can be
summarized as follows: i) a formal definition of the problem
of evaluating SPARQL skyline queries in an OBDA context;
ii) Morph-Skyline, an OBDA approach based on the SPARQL-
to-SQL translation approach proposed by Chebotko et al. [11]
that is able to evaluate SPARQL skyline queries over RDB;
iii) the definition and implementation of two skyline algo-
rithms, skyQT for RDBMS with specific physical operators for
these queries and QRT for query rewriting techniques. iv) An
empirical evaluation of the Morph-Skyline behavior over two
benchmarks with queries of different dimensionalities.

The remainder of this article is structured as follows: Sec-
tion II motivates the problem of evaluating skyline queries in
an OBDA context. Section III presents related work in skyline
queries and ontology-based data access (OBDA). Section
IV describes our OBDA-based approach and two proposed
solutions which are implemented in Morph-Skyline. Section
V reports and discusses on the results of our empirical study,
and finally, Section VI concludes and gives insights for future
work.

II. MOTIVATING EXAMPLE

Suppose a database containing data from the Madrid metro
system1 following the GTFS (General Transit Feed Specifi-
cation) model2, a table named demands storing statistics on
annual accumulated demand or the number of users by line,
and a table called uses containing the number of uses or
movements within each station where uses are calculated as
the number of entries and exits through the turnstile plus the
number of transfers between lines if it is a station with access
to more than one Metro line. Also, consider that the Madrid
Metro Council wants to identify the least used stations within
the most demanded lines so as to make some decisions on
the types of services to be offered (e.g. the rental value of the
business units inside of stations or the amount of personnel in
these stations). According to the Madrid Metro Council, both
the station uses and demands per line are equally important
and relevant; hence, a predefined score function cannot be

1https://www.metromadrid.es
2https://developers.google.com/transit/gtfs

SELECT DISTINCT ?route ?stop ?demand ?use
WHERE {?trip gtfs:route ?route.
?stopTime gtfs:trip ?trip; gtfs:stop ?stop.
?stop ex:use ?use. ?route ex:demand ?demand.}

SKYLINE OF ?demand MAX,?use MIN

(a) SPARQL skyline Query

Line Station Demand Use
5 253 59,429,010 1,267,151
10 278 65,134,740 1,481,940
7 296 38,497,353 351,971
1 295 80,042,527 1,536,049
6 259 92,049,658 3,142,010
6 107 92,049,658 3,906,267

(b) Skyline (c) Heatmap

Fig. 1: A sample skyline based on the Madrid Metro
network. Metro stations whose services may need to be
reorganized in terms of demands per line (Demand) and station
uses (Use). We can observe that in line 6, the station 107 is
dominated by the station 259.

assigned to be used in a query. A station can be chosen if
there is no other station with a lower use belonging to a line
with a higher demand. To select a station, we must identify
the set of all the stations that are non-dominated by any
other station in terms of two criteria: minimizing station uses
and maximizing demands per line. Following these criteria,
a SPARQL skyline query is expressed in Fig.1a, and the
computed skyline is presented in Fig. 1b. The stations 253,
278, 296, 295, and 259 are the non-dominated ones, i.e., there
is no other station with values better than them in these two
attributes. Additionally, a station s1 dominates a station s2, if
s1 has better or equal values and at least one better in demand
and use than s2, e.g., the station 259 dominates the station 107.
Moreover, for these stations, a heatmap is shown in Fig. 1c
which represents the best values with lighter colors. Visually,
a station s1 dominates a station s2 if s1 has the same or lighter
colours than s2 and at least one lighter color. It can be noticed
that the station 107 has the same color in Demand as the
station 259 but a darker color in Use. In Fig. 2 we show two
different query plans from a skyline query to obtain the results
of the example. In our example, preferences are calculated
by joining trips, stop times, stops, routes, demands and
uses firstly, then performing the skyline operator on the join
result (Fig. 2a). This solution can also be calculated with an
equivalent translated query without the Skyline clause (Fig.
2b). We can observe that the results obtained (Fig. 2c) for the
option that implements the skyline clause inside the DBMS
obtains improved results.

In addition, the Madrid Transport Consortium (CTM) wants
to create seamless multimodal mobility solutions, combining
various travel services of its Transport Service Providers
(TSP). However, most TSP systems are based on RDB tech-
nology and a change in their data model can be costly
and time-consuming. Thus, CTM has decided to convert
these data to another data model (RDF) under the OBDA
approach [7] to make them available without renewing its
entire software infrastructure. The RDF materialization is not

https://www.metromadrid.es
https://developers.google.com/transit/gtfs


Demand
(13)

Uses
(236)

(236)

(289)

sub-select
(289)

Sp
(5)

(a) Skyline Query Plan

Demand
(13)

Uses
(236)

(236)

(289)

sub-select
(289)

Demand
(13)

Uses
(236)

(236)

(289)

sub-select
(289)

(5)
 Anti-join

Sp Skyline Operator

(b) Translated Query Plan

Approaches/Metrics Execution Time (sec) # Intermediate Results
Skyline Query 9.185 9,984
Translated Query 12.025 11,047

(c) Obtained results

Fig. 2: Skyline and translated query plans and results.
Plans for the query that retrieves the skyline of the least used
stations within the most demanded lines. Sub-select represents
the join between trips, stop times, stops, and routes which
produces 8,916 intermediate results. The operator Anti-join
corresponds to FILTER NOT EXISTS including pair-wise
dominance checks on sub-select with itself.

an option because the enormous data size and to ensure the
results are always up to date. Taking the advantage of an
OBDA approach [7], skyline queries can be abstracted of
schema-level details representing them using common and
shared vocabularies while query evaluation benefits from the
exploiting of skyline algorithms over an RDB instance.

III. STATE OF THE ART

The problem of efficiently computing the skyline for a
dataset and a query has been extensively studied in the
literature [2], [13]–[15]. Initially, Börzsönyi and colleagues [2]
introduced two solutions to evaluate skyline queries in the
context of databases: the first solution was based on the divide
& conquer principle where data is partitioned to be processed
and merged in main memory; the second solution was based
on the Block Nested Loop (BNL) algorithm where each tuple
is compared with the rest and the tuple is returned only if it
is not dominated by any other. Subsequently, other solutions
were introduced to improve the BNL performance by means
of a monotone preference function that exploits data ordering
properties [13]–[15]. In addition, several works benefit from
the properties of index structures to progressively return more
and more results until the full skyline is retrieved [16], [17].
All these skyline algorithms based on scanning or indexing
can be integrated as physical implementations for the Skyline
operator inside a database engine, showing substantial benefits
[2], [12], [18]. In these works, the skyline operator is not
executed on top of an RDBMS but it is incorporated during the
query processing considering cost and cardinality estimation
of the skyline operator. Bearing in mind that the skyline as
a physical operator within a relational engine is an efficient
implementation for computing the skyline, and the maturity
of relational database systems, in this work, one of the two

proposed techniques evaluates a skyline query using an OBDA
system that provides such physical operator in the RDBMS.

There are some works related to extensions of SPARQL
with qualitative preferences [3]–[5], which are based on a more
general operator than skyline called winnow [19]. The authors
in [3] propose to add preference-based querying capabilities
to SPARQL. SPREFQL [4] is another extension of SPARQL
for qualitative preferences. At the implementation level, they
presented a query rewriting technique that maps from a SPRE-
FQL query to an equivalent SPARQL query by means of the
NOT EXISTS operator. Unfortunately, their solution based on
query rewriting does not work correctly due to the fact that it
is based on the SPARQL EXISTS, which has many known
problems [20]. Thus, [5] identified and fixed the problem
in the previous proposals for acyclic and transitive prefer-
ence relations. Datalog +/- was extended in [21] to include
preferences and the authors developed algorithms to answer
more general preferences than skyline queries over Datalog
+/- ontologies. Finally, [6] presented a set of client-based
algorithms to evaluate skyline queries over knowledge graphs
using standard query interfaces for RDF. They are focused
on the optimization over client architectures so they assumed
no control over how the data is stored (e.g., indexes, internal
structures, etc), hence, they cannot exploit them to optimize
the performance and quality of the queries at server side.
They introduced methods on different interfaces: SPARQL
endpoints (not implemented), Triple Pattern Fragments (TPF),
Bindings-restricted Triple Pattern Fragments (brTPF) and a
TPF-like interface (skyTPF).

To the best of our knowledge, existing OBDA engines do
not support skyline queries. The most related work is [22]
which considers the problem of evaluating top-k queries in the
context of OBDA over relational databases. OBDA systems are
usually focused on the transformation of the original sources
into a global schema and its corresponding materialization [8]
but also on query translation techniques for highly dynamic
data sources [9], [10]. To cover the features of different data
formats, many different types of OBDA mapping languages
have also been proposed in the last few decades, with a wide
variety of syntax and formats. Since its W3C recommen-
dation in 2012, R2RML has become the standard mapping
specification for accessing relational databases. Many tools
support these rules, some of them materialize the data into a
knowledge graph (e.g. DB2Triples3 and R2RMLParser4) and
others provide virtual RDF views, focusing on formalizing the
translation of SPARQL into SQL and optimizing the resulting
SQL query (Morph-RDB [10] and Ontop [9]).

IV. MORPH-SKYLINE: OBDA-BASED SKYLINE QUERIES

In this section we describe Morph-Skyline, an OBDA
framework for translating and executing skyline queries from
SPARQL-to-SQL. Our formalization is based on OBDA [7],
which relies on conceptually representing a domain of interest
over data stored in an underlying database system.

3https://github.com/antidot/db2triples
4https://github.com/nkons/r2rml-parser

https://github.com/antidot/db2triples
https://github.com/nkons/r2rml-parser


Definition 1 (OBDA Specification [7]). OBDA is defined as a
triple σ = 〈O,S,M〉 where O is an ontology that describes
the domain, S is a schema, and M is a mapping between O
and S. In addition, an OBDA instance is defined as a tuple
PI = 〈σ,D〉 where σ is an OBDA specification and D is a
data instance conforming to S.

Definition 2 (Skyline over a relational database). Let Ai be the
set of attributes belonging to a relational table in S. For d ≥ 1,
let I = {i1, . . . , in} be a set of tuples characterized by a set of

attributes A = {a1, . . . , ad} ⊆
t⋃

i=1

Ai where t is the number

of tables in S, and let F = {f1, . . . , fd} be a set of directives
where each fj specifies if the value in aj is minimized or
maximized. We assume that each aj ∈ A consists of numeric
values only, and without loss of generality, we also assume
minimization for each f ∈ F , i.e., a smaller value is preferred
for each attribute aj ∈ A. A tuple ik dominates a tuple il,
denoted by ik ≺ il, if (∀aj ∈ A|ik.aj ≤ il.aj) ∧ (∃aj ∈
A|ik.aj < il.aj). The Skyline set is a subset of I such that:
{il ∈ I | (¬∃ik ∈ I | ik ≺ il)}. A skyline query over a
relational database is defined as a pair q = (SQ, SA) where
SQ is a non-skyline SQL query on S and SA is a set of pairs,
each of which is a numeric attribute aj ∈ A belonging to
tables included in SQ with its corresponding directive fj ∈ F .

Definition 3 (Skyline Query over an RDF Graph). Let JP K
be the set of solutions to a SPARQL pattern P . Let SV be
a set of d pairs, each of which is a numeric variable vj that
occurs in P with its corresponding directive fj of minimization
or maximization. A skyline query over an RDF Graph G is
defined as a pair q = (P, SV ) which produces a subset of
JP K such that: {pl ∈ JP K | (¬∃pk ∈ JP K | pk ≺ pl)} where
≺ is defined as Def 2 replacing I with JP K, and A with the
set of variables occurring in SV .

Problem Definition. Given an OBDA Specification
σ = 〈O,S,M〉 and an SPARQL skyline query Q = (P, SV )
over an RDF graph G resulting from the application of σ,
the problem of skyline query translation in an OBDA setting
is defined as finding a skyline query Q′ = (SQ, SA) over S
that meets the following conditions:
• there is a function µ:P → SQ that maps P to its corre-

sponding SQL query over S according to the mappings
M. The function µ is defined as trans in [10].

• there is a mapping µi = (term(v), v′) ∈ M such that
each pair p = (v, r) ∈ SV matches p′ = (v′, r) ∈ SA
and there is no pair in SA that does not match a pair in
SV where term(v) is the ontology term corresponding
to the variable v, e.g., the ontology term associated with
the ?demand variable is mapped to the database attribute
demand by using M. Thus, in our motivating example,
SV = {(?demand,MAX), (?use,MIN)} is translated
to SA = {(demand,MAX), (use,MIN)}.

• There is a method to translate Q to Q′ where the results
of Q′ are equal to Qsql being Qsql a perfect SQL query
skyline (gold standard), i.e., over any relational database,
a SQL query written manually by an expert and the

SELECT DISTINCT route_long_name, stop_name,demand,
use

FROM stops s1
JOIN stop_times s2 ON s2.stop_id=s1.stop_id
JOIN trips t ON t.trip_id=s2.trip_id
JOIN routes r ON r.route_id=t.route_id
JOIN demands d ON s.route_id=d.route_id
JOIN uses u ON u.stop_id=s1.stop_id
SKYLINE OF demand MAX, use MIN

(a) A SQL skyline query.

SELECT DISTINCT ?route ?stop ?demand ?use
WHERE {?trip gtfs:route ?route.

?stopTime gtfs:trip ?trip; gtfs:stop ?stop.
?stop :use ?use. ?route :demand ?demand.

OPTIONAL {?trip2 gtfs:route ?route2.
?stopTime2 gtfs:trip ?trip2; gtfs:stop ?stop2.
?stop2 :use ?use2. ?route2 :demand ?demand2.

FILTER(?use2<=?use && ?demand2>=?demand &&
(?use2<?use || ?demand2>?demand))}

FILTER(!BOUND(?stop2))}

(b) A SPARQL translated skyline query.

Fig. 3: SQL and SPARQL Skyline queries. The skyline of
the least used stations within the most demanded lines.

equivalent one in SPARQL (that then, is translated with
our proposal) have the same results.

Proposed Solution

We propose Morph-Skyline as an OBDA skyline query
translation engine for relational databases. Morph-Skyline is
based on the Chebotko et al.’s translation approach [11]
which formalizes query translation from SPARQL into SQL
exploiting the use of a set of mapping rules and their corre-
sponding functions. More specifically, Morph-Skyline relies on
the formal definition of mappings and functions with R2RML
provided by [10].
Query translation exploiting skyline operators in databases.
skyQT is a technique based on a physical skyline operator.
By using skyQT, a SPARQL skyline query Q = (P, SV )
is translated to a SQL skyline query skyline query Q′ =
(SQ, SA). First, P is translated to SQ by means of the
function µ defined as trans in [10]. Then, each pair p =
(v, r) ∈ SV is matched to p′ = (v′, r) ∈ SA according
to the mapping M. Thus, the translated skyline query will
be executed into the underlying database system. The SQL
skyline query in Fig. 3a is the result of translating P to SQ,
and SV = {(?demand,MAX), (?use,MIN)} to SA =
{(demand,MAX), (use,MIN)}. Algorithm 1 sketches the
algorithm skyQT implemented by Morph-Skyline to process
skyline queries in an OBDA context. skyQT receives a set
of mappings M and a SPARQL skyline query Q. It firstly
initializes SA, which will contain the skyline query translated
to SQL, and it separates the skyline clause from the query Q
and gets a non-skyline subquery (lines 1-3). In line 4, skyQT
translates the non-skyline query nsQuery into SQL by means
of the function trans [10]. Lines 5-6 build a hash structure
from the pattern P belonging to the query nsQuery; this hash
structure contains the attribute that maps each variable. Note
that β returns the column/constant that corresponds to each



Algorithm 1 Skyline Query Translation, skyQT: M - Map-
pings, Q - Skyline query

1: SA← ∅
2: sky ← skyline clause from Q
3: nsQuery ← Q \ sky
4: query ← trans(nsQuery, M)
5: pa ← P from Q
6: h← β(pa,M)
7: for each pair (vi, di) ∈ pairs(sky) do
8: ai ← get(h, vi)
9: create a pair p =(ai,di)

10: add p to SA
11: return (query, SA)

variable in a SPARQL query [10]. Subsequently, for each
variable in the skyline clause, skyQT iteratively obtains its
corresponding attribute by searching for it in the structure hash
h, and creates a pair of a mapped attribute and a directive
which is inserted into SA (lines 8-10). Finally, skyQT returns
a pair with the translated query and SA.
Skyline query rewriting in SPARQL. The Query Rewrit-
ing Technique (QRT) proposed in [4] is an alternative to
evaluate SPARQL skyline queries. It consists of rewrit-
ing a SPARQL skyline query by using “NOT EXISTS”
(for SPARQL 1.1) or “OPTIONAL” and “FILTER” (for
SPARQL 1.0) [4]. Since “FILTER NOT EXISTS” has
known problems [5], QRT was analysed using the standard
SPARQL 1.0. By using QRT, a SPARQL skyline query
Q = (P, SV ) is translated to SPARQL 1.0 as: Q′ =
P OPTIONAL { P ′ FILTER (dominance(P, P ′, SV ))}
FILTER (!bound(?check)), where P and P ′ represent
SPARQL patterns, P ′ is the same graph pattern than P but
with all variables renamed as fresh variables, ?check is one
of the fresh variables that is used to bind, SV is the preference
criteria, and dominance is a function that checks dominance
between solutions from P and P ′, and it is defined in Def.
4. FILTER within the OPTIONAL clause allows to perform
dominance checks for each pair of instances and the FILTER
(!bound(?check)) verifies the instance is not dominated.

Definition 4 (Dominance). Let Pmax = {p1, . . . , pk} and
Pmin = {pk+1, . . . , pn} be the set of variables belonging
to SV to be maximized and minimized, respectively. Each
variable pi in Pmax∪Pmin is renamed as qi according to P ′.
The dominance(P, P ′, SV ) function rewrites each criterion
in SV as: i) pi ≥ qi for all i = 1, . . . , k, and pi ≤ qi for all
i = k + 1, . . . , n; and, ii) pi > qi for some i = 1, . . . , k or
pi < qi for some i = k + 1, . . . , n.

To illustrate the rewriting technique, consider again our
motivating query shown in Fig. 1a. ?use,stop of P are
renamed as ?use2,stop2 for P ′ in Fig. 3b. FILTER within
the OPTIONAL clause applies the dominance function of Def.
4 which allows to perform dominance checks for each pair of
solutions and the last FILTER verifies the solution from P is
not dominated by any solution from P ′. If ?stop2 is bound
means that it is dominated because the inner FILTER found
a better solution than ?stop. For a more detailed description

of QRT, please refer to [4].

V. EXPERIMENTAL EVALUATION

We study the efficiency and effectiveness of our two
implementations of Morph-Skyline. First, we describe the
hypotheses that we want to validate as well as the datasets
and queries, mappings, metrics and implementation details for
our experimental study. All the resources used are online5,6.
Hypotheses: i) H1: As the skyline query dimensionality
increases, the skyline cardinality augments, hence, the OBDA
skyline algorithms have to perform more dominance checks;
therefore, they increase their execution time; ii) H2: As the
dataset size increases, the skyline size also enlarges [23]
and the OBDA skyline algorithms have to perform more
dominance checks; therefore, they increase their runtime;
iii) H3: A SPARQL-to-SQL skyline algorithm executed as
a physical operator within a relational database engine has
better performance than the operator executed on top of a
database engine, even though the engine included techniques
to optimize the query; iv) H4: Morph-Skyline performs better
than the current SPARQL-based approach on materialized
RDF for skyline query evaluation.
Datasets and Queries: We have used two different bench-
marks for the experimental evaluation of our proposal: i) We
have generated synthetic datasets by using the benchmark
generator implemented in [2]. We have generated data with
three different distributions: correlated, anti-correlated and
independent (uniform). For each distribution, five datasets
were generated with 10K, 100K, 1M, 10M, and 100M tuples,
respectively. Each dataset is characterized by an identifier
and 10 dimensions. For each dataset, 9 queries with the
MIN directive were evaluated varying dimensions from 2 to
10; ii) TPC-H: We use the Transaction Processing Council
Ad-hoc/decision support benchmark consisting of 15 queries
expanded by PREFERRING clauses in [12]. We adapt this
benchmark with SPARQL queries. Only 6 of the queries
presented in [12] are skyline with minimizing and maximizing
criteria. We have generated an 1GB TPC-H dataset where the
largest table has 6 million tuples. The skyline queries in TPC-
H are Q0, Q2, Q4, Q6, Q8 and Q9 which include joins and
vary dimensions from 1 to 4. The 1GB dataset was transformed
into RDF by means of SDM-RDFizer [24] where the total
number of triples is 111 million and the RDF file size is 20 GB.
Finally, we have selected the benchmark in [2] because it is
the commonly used benchmark for evaluating skyline queries
which generates independent, correlated and anti-correlated
data for a single table. Thus, for each relational schema, there
is only one table. Also, since joins are costly operators in
SPARQL-to-SQL engines [25], we have included the TPC-H
benchmark that involves joins into their queries in order to
execute more complex skyline queries.
Mappings: i) For the benchmark defined in [2], we have
created an R2RML mapping document for accessing each
relational dataset. For each dataset size and data distribution,

5https://github.com/oeg-upm/morph-skyline
6https://doi.org/10.5281/zenodo.3974178

 https://github.com/oeg-upm/morph-skyline
 https://doi.org/10.5281/zenodo.3974178


a table T (id, d1, . . . , d10) is created and identified by the
data distribution type and the dataset size. Each table T
is mapped to a class Dataset with the attribute id as the
identifier, using rr:template for generating the URI of
the instances. Each attribute di is mapped to an ontology
property d

′

i; ii) For the TPC-H benchmark, we have created
an R2RML mapping document for accessing each table with
53 PredicateObjectMaps, 53 Predicates, 53 ObjectsMaps, and
9 JoinConditions.
Evaluation Metrics: We measure performance as query exe-
cution time. It is computed as the elapsed time in seconds
between the submission of a query to the engine and the
delivery of the answers. Each query was executed 5 times
in cold mode and timeouts are set up to 1 hour. The quality
of skyline techniques are also measured in terms of precision,
recall and F-measure. Precision measures the percentage of
instances that should be in the skyline set computed in
terms of the ground truth; recall measures the percentage of
instances produced in terms of the ground truth. Ground truth
corresponds to the skyline directly retrieved from the relational
database engine and then materialized in RDF using the RML
mappings and the SDM-RDFizer [24] engine to ensure their
correctness.
Engines: Morph-Skyline is an open source software under the
Apache 2.0 licence written in Scala. The RDB engine used
is EXASol because it includes a dedicated skyline operator
implementing the BNL algorithm [12]. We have compared
Morph-Skyline against SPREFQL [4], which is developed
in Java and can query data loaded into a locally deployed
SPARQL endpoint of Virtuoso Community Edition Version
7.1. We have also evaluated the multi-threaded version of
the skyTPF and brTPF-based methods [6], a Java servlet
implementation that uses RDF-HDT data sources to process
skyline queries. We also wanted to study the multi-threaded
version of skyTPF [6] for the benchmark defined in [2] but
it outputs an execution error. We considered testing our work
against NL [4], and TPF-based method [6], but the authors
showed that these algorithms have worse performance w.r.t
BNL, and the skyTPF and brTPF-based methods, respectively.
Experiments are executed on a machine with the following
characteristics: 2GHz CPU with 8 cores, 64 GB RAM with
Ubuntu 18.04 as its operating system.

Discussion of the Observed Results.

In order to validate the proposed hypothesis we execute
Morph-Skyline with the two implemented skyline OBDA
algorithms (skyQT and QRT) using the queries defined by
the range of dimensions (2-10) and the selected data sizes for
all the distributions. Additionally, using the same resources,
we run the skyTPF and brTPF-based methods [6], and SPRE-
FQL [4] with two different algorithms: BNL where specific
operators are implemented on the top of the triple store for
each algorithm and RW, that implements a query rewriting
technique. Although the methods, developed by SPREFQL,
were designed for the winnow operator [19], certainly they
can be adapted to evaluate the skyline operator as a particular

(a) Performance of Morph-Skyline for 10K datasets

(b) Performance of Morph-Skyline for 100K datasets

Fig. 4: Performance of Morph-Skyline algorithms. skyQT
clearly overcomes QRT in all the cases.

case. With this comparison, we want to demonstrate the
importance of skyline physical operators, and that translations
to equivalent ones are not a good solution neither to native
knowledge graphs nor virtual knowledge graphs. We analyze
the results from the experimental setup more in the detail in
the following sections.
Query rewriting vs physical skyline operators in OBDA.
Fig. 4 reports the average execution time in seconds varying
the number of dimensions from 2 to 10 for skyQT and QRT.
The first observed result is that we cannot compare the two
algorithms over all the generated data sizes due to the fact
that QRT does not answer the queries of 1M, 10M and 100M
on time, which means that data size clearly impacts over this
algorithm. For the data sizes where we can test both algorithms
the skyQT performance is better in almost all cases than for
QRT, the average execution time for skyQT is up to two
orders of magnitude less than for QRT. Thus, our hypothesis
H3 holds: the physical operator of skyQT executed within
a relational database engine has better performance in view
of the fact that the engine optimizes the query. Nevertheless,
QRT is a bit better for the 10-dimensional query on the anti-
correlated dataset for 10K size although the query takes on
average about 0.26 ms less than skyQT. The main reason
is because QRT performs a join among a set of dominated
instances and the rest of instances but, in this case, the number
of dominated instances are very small, which means that the
size of the skyline is almost as big as the dataset size and the
number of performed joins is reduced to the minimum. This
is why QRT approximates skyQT with each increase in the



(a) Physical Operators for 10K datasets

(b) Rewriting Techniques for 10K datasets

Fig. 5: Comparison of skyline algorithms over SPARQL
and OBDA approaches for 10K dataset size. We can
observe that Morph-Skyline performs better than RDF-native
approaches when rewriting techniques are used.

number of dimensions. Additionally, we analyze the behaviour
of the QRT algorithm in order to answer: why it does not
scale-up (impact of the data size), contradicting hypothesis
H2, and why the performance worsens as the dimensionality
increases, contradicting hypothesis H1. We observed that both
explanations are related and not dependent of the algorithm
but on the RDBMS that has been used. QRT compares each
instance t against the others to verify that there is no better one
than t, which means that H1 and H2 should be held. Although
we had assumed in our hypothesis H1 that the performance
worsens as the dimensionality increases, QRT contradictorily
improves its performance. Thus, we have double checked QRT
with up to 6-dimensional queries and a MySQL database that
stores an independent 10K dataset, and the results obtained
are presented in Table I. However, unlike QRT with EXASol,
the performance does become worse with MySQL as we
had anticipated. The execution time in MySQL for the same
queries ranging from 13 min to 8 hr. Also, we have analyzed
the execution plans of this kind of queries on EXASol to
understand why the performance improves. The main complex
part of the query plan is a left outer join between the input
table R and the result produced by a theta self-join of the
input table R: R d|><| (R |><|R). The engine, after performing the
theta self-join operator, builds an on-the-fly index for the left
outer join to optimize the execution. This index can be huge,
e.g., the index contains approximately 2 billions of entries
for 100K tuples and a 2-dimensional query, while the index

comprises approximately 200 million entries for 100K tuples
and a 4-dimensional query. For this reason, QRT performance
improves in EXASol due to the fact that less data is indexed as
dimensionality increases. We performed a similar experiment
over another RDBMS and we observed that both hypotehesis
hold. Finally, this solution is not scalable due to the amount of
space it needs and it is the reason why QRT does not provide
results for the rest of data sizes on time. Also, we can observe
that although QRT includes specific optimization techniques
for these types of queries, it is not able to overcome algorithms
that exploit the use of pyhsical operators.

Dimensions Avg. Time (s)
2 789.98
3 2378.97
4 6680.01
5 14436.96
6 29057.03

TABLE I: Average execution time in seconds using Morph-
Skyline with MySQL and QRT. Performance degrades
with query dimensionality for the rewriting technique over
MySQL. Unlike EXASol, MySQL does not run any additional
optimization and like skyQT, as many dominance checks are
performed as the the square of skyline size.

Morph-Skyline vs native SPARQL. We compare Morph-
Skyline against SPREFQL and the brTPF-based method in
order to analyze their performance with respect to the number
of dimensions for three data distributions under 10K datasets
as a case to show what happens. Fig. 5 reports the average
execution time in seconds varying the number of dimensions
from 2 to 10 for Morph-Skyline and the state-of-the-art tools.
Particularly, Fig. 5a depicts the average execution time of
skyQT against the BNL operator of SPREFQL and the brTPF-
based method and Fig. 5b compares the average execution time
of the rewriting techniques. It is noteworthy that skyTPF is not
reported because it returned a runtime error, and the execution
time of SPREFQL and brTPF-based method does not include
the materialization time for generating RDF triples. We can
observe in Figure 5a that BNL performs better than Morph-
Skyline for low-dimensional queries with 3-6 dimensions de-
pending on the data distribution, possibly because of the small
size of the skyline set and the efficient data access mechanisms
by Virtuoso. For the three data distributions where BNL is
better, the cardinality of the skyline is lower than 520. On the
other hand, skyQT has a dedicated physical skyline operator
inside the database engine which allows the engine to directly
apply optimizations during the skyline query processing and
thus, it scales-up with the query dimensionality, reflecting in
runtimes always below 10 seconds, while the execution time
for BNL is up to two orders of magnitude more than skyQT.
More in detail, skyQT outperforms BNL in medium and high
dimensions (> 4) because of the growth of the intermediate
results of the self-joins in Virtuoso. We have also observed in
Figure 5a that the brTPF-based method performs better than
Morph-Skyline for correlated data and with queries of up to
5-6 dimensions in the case of independent and anti-correlated



(a) Physical Operators for 100K datasets

(b) Physical Operators for 1M datasets

(c) Physical Operators for TPC-H

Fig. 6: Scalability of OBDA vs SPARQL. We compare
skyline algorithms over OBDA and SPARQL approaches for
larger datasets. We can observe that Morph-Skyline performs
better than RDF-native approaches for larger datasets.

data, possibly because the data is processed by groups of
triple patterns. In addition, Figure 5b shows that the rewriting
technique on SPREFQL (RW) has the worst performance w.r.t
QRT. Thus, our results also validate our hypothesis H4.

On the other hand, Fig 6 depicts that Morph-Skyline over-
comes SPREFQL and the brTPF-based method for larger
datasets (≥ 100K) when we increase the size of the dataset.
For the TPC-H benchmark, the skyTPF-based method success-
fully ran and it was included in Fig. 6c. It is also important to
highlight that SPREFQL was unable to execute the query 8 of
the TPC-H benchmark because the preferring clause includes
functions over the criteria. We can observe that SPREFQL,
and skyTPF and brTPF-based methods are worse than Morph-
Skyline showing the benefits of a physical operator inside the

Independent Correlated Anti-correlatedQ P R F P R F P R F
2 0.700.64 0.45 0.75 0.50 0.38 0.60 0.67 0.40
3 0.790.79 0.62 0.86 0.67 0.57 0.44 0.21 0.09
4 0.780.76 0.59 0.93 1.00 0.93 0.57 0.22 0.12
5 0.770.78 0.60 0.90 1.00 0.90 0.65 0.28 0.18
6 0.750.80 0.61 0.88 1.00 0.88 0.75 0.34 0.25
7 0.760.81 0.62 0.89 1.00 0.89 0.82 0.46 0.38
8 0.780.86 0.66 0.90 1.00 0.90 0.89 0.57 0.51
9 0.810.80 0.65 0.90 1.00 0.90 0.94 0.70 0.65
10 0.840.85 0.71 0.91 1.00 0.91 0.98 0.79 0.78

TABLE II: Skyline Resultset Quality. SPREFQL produces
incorrect and incomplete answers. For the sake of simplicity,
Morph-Skyline values are omitted since they are always 1.0

Fig. 7: Morph-Skyline execution time over skyQT. Perfor-
mance worsens exponentially with the query dimensionality
and the dataset size.

database engine. Thus, these results validate our hypothesis
H4: a SPARQL-to-SQL skyline query has better performance
than the current SPARQL-based approach on materialized
RDF.

Additionally, we report the SPREFQL quality for 10K
datasets under the three data distributions. SPREFQL can
produce incomplete and incorrect responses because it was
developed for preferences more general than skyline. Table II
reports precision, recall and F-measure for SPREFQL varying
the number of dimensions and, in general, the three measures
are improved as dimensionality increases. Incorrect skyline
tuples identified by SPREFQL can be those dominated tuples
that dominate another tuple and the missing ones by SPREFQL
can be those skyline tuples that do not dominate another.
We omit the Morph-Skyline quality because its precision and
recall is 1.0, as evaluated by us.

Impact of the skyline parameters over Morph-Skyline. We
also empirically study how the dataset size and dimensionality
affects the total execution time of Morph-Skyline. Regarding
the aforementioned scalability problems of the QRT approach,
we show the results for skyQT over all the dataset sizes.
More in detail, Fig. 7 shows how the skyQT performance
is affected varying the number of dimensions from 2 to 10
for dataset sizes from 10K to 100M. We can observe that
for each dimension, the execution time grows exponentially
as the number of dimensions increases, thus corroborating
our hypothesis H1 for all the data distributions. Additionally,
skyQT is run using BNL, where its cost directly depends on



the dataset size. In the worst-case, BNL is O(n2), where n is
the data size, which means, that skyQT is clearly affected by
the dataset size. This also holds our hypothesis H2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we describe Morph-Skyline, an OBDA-based
engine that identifies a subset of data among the whole virtual
knowledge graph that best meets criteria of a stakeholder
request expressed as a SPARQL skyline query. We designed
and implemented two algorithms: skyQT and QRT, algorithms
based on a SPARQL-to-SQL query translation and able to
compute the skyline set in an OBDA context. We studied
the performance of skyQT with respect to the query rewriting
technique, QRT, on synthetic data. The experimental results
suggest that skyQT outperforms QRT and is capable of scaling
to larger datasets. We also reported experimental results with
state-of-the-art tools to evaluate skyline queries over RDF data.
These results showed that our approach outperforms state-
of-the-art tools for larger datasets. In the future, we plan to
consider skyline queries including the DIFF directive, which
allows grouping the skyline by the attribute that comes before
the directive. We also want to evaluate skyline queries over
data sources in other data formats such as CSV or JSON
adapting, to skyline queries, general existing benchmark for
virtual knowledge graph construction [26]. We also plan to
empirically study the performance and scalability of our tool
in real use cases from the transport domain.

ACKNOWLEDGMENTS

The work presented in this paper is supported by the project
Semantics for PerfoRmant and scalable INteroperability of
multimodal Transport (SPRINT H2020-826172) and by the
Spanish Ministerio de Economı́a, Industria y Competitividad
and EU FEDER funds under the DATOS 4.0: RETOS Y
SOLUCIONES - UPM Spanish national project (TIN2016-
78011-C4-4-R) and by an FPI grant (BES-2017-082511).

REFERENCES

[1] C. Kalyvas and T. Tzouramanis, “A survey of skyline query processing,”
Computing Research Repository Journal, vol. abs/1704.01788, 2017.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings of the 17th International Conference on Data Engineering.
IEEE Computer Society, 2001, pp. 421–430.

[3] W. Siberski, J. Z. Pan, and U. Thaden, “Querying the Semantic Web with
preferences,” in The Semantic Web - ISWC 2006. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 612–624.

[4] A. Troumpoukis, S. Konstantopoulos, and A. Charalambidis, “An exten-
sion of SPARQL for expressing qualitative preferences,” in The Semantic
Web. Cham: Springer International Publishing, 2017, pp. 711–727.

[5] P. F. Patel-Schneider, A. Polleres, and D. Martin, “Comparative prefer-
ences in SPARQL,” in Knowl. Eng. and Knowl. Management. Cham:
Springer International Publishing, 2018, pp. 289–305.

[6] I. Keles and K. Hose, “Skyline queries over knowledge graphs,” in The
Semantic Web. Cham: Springer International Publishing, 2019, pp.
293–310.

[7] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,
and M. Zakharyaschev, “Ontology-Based Data Access: A survey,” in
IJCAI. ijcai.org, 2018, pp. 5511–5519.

[8] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. V.
de Walle, “RML: A generic language for integrated RDF mappings of
heterogeneous data,” in LDOW, ser. CEUR Workshop Proceedings, vol.
1184. CEUR-WS.org, 2014.

[9] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL queries over relational databases,” Semantic Web, vol. 8, no. 3,
pp. 471–487, 2017.

[10] F. Priyatna, Ó. Corcho, and J. F. Sequeda, “Formalisation and ex-
periences of R2RML-based SPARQL to SQL query translation using
morph,” in 23rd International World Wide Web Conference, WWW ’14,
Seoul, Republic of Korea, April 7-11, 2014. ACM, 2014, pp. 479–490.

[11] A. Chebotko, S. Lu, and F. Fotouhi, “Semantics preserving SPARQL-
to-SQL translation,” Data Knowl. Eng., vol. 68, no. 10, pp. 973–1000,
2009.

[12] S. Mandl, O. Kozachuk, M. Endres, and W. Kießling, “Preference
analytics in exasolution,” in Datenbanksysteme für Business,
Technologie und Web (BTW), ser. LNI, vol. P-241. GI, 2015,
pp. 613–632. [Online]. Available: https://dl.gi.de/20.500.12116/2434

[13] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presort-
ing,” in 19th International Conference on Data Engineering, 2003.

[14] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computation in
large data sets,” in VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, 2005, pp. 229–240.

[15] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline
evaluation,” ACM Trans. Database Syst., vol. 33, no. 4, pp. 1–49, 11
2008.

[16] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky:
An online algorithm for skyline queries,” in The 28th international
conference on Very Large Data Bases, 2002, pp. 275–286.

[17] M. Endres and E. Glaser, “Indexing for skyline computation,” in Flexible
Query Answering Systems. Cham: Springer International Publishing,
2019, pp. 31–42.

[18] S. Chaudhuri, N. Dalvi, and R. Kaushik, “Robust cardinality and cost
estimation for skyline operator,” in Data Engineering, 2006. ICDE ’06.
Proceedings of the 22nd International Conference on. Los Alamitos,
CA, USA: IEEE Computer Society, 2006, p. 64.

[19] J. Chomicki, “Querying with intrinsic preferences,” in Advances in
Database Technology — EDBT 2002. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 34–51.

[20] P. F. Patel-Schneider and D. Martin, “EXISTStential aspects of
SPARQL,” in International Semantic Web Conference, 2016.

[21] T. Lukasiewicz, M. V. Martinez, and G. I. Simari, “Preference-based
query answering in datalog+/- ontologies,” in IJCAI 2013, Proceedings
of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, 2013, pp. 1017–1023.

[22] U. Straccia, On the Top-k Retrieval Problem for Ontology-Based Access
to Databases. Cham: Springer International Publishing, 2014, pp. 95–
114.

[23] P. Godfrey, “Skyline cardinality for relational processing,” in
Foundations of Information and Knowledge Systems. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 78–97.

[24] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, and M.-E.
Vidal, “SDM-RDFizer: An RML interpreter for the efficient creation
of rdf knowledge graphs,” in ACM Intern. Confer. on Information and
Knowledge Management, CIKM, 2020.

[25] D. Chaves-Fraga, K. M. Endris, E. Iglesias, O. Corcho, and M.-E.
Vidal, “What are the parameters that affect the construction of a
knowledge graph?” in On the Move to Meaningful Internet Systems:
OTM 2019 Conferences, H. Panetto, C. Debruyne, M. Hepp, D. Lewis,
C. A. Ardagna, and R. Meersman, Eds. Cham: Springer International
Publishing, 2019, pp. 695–713.

[26] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, and
O. Corcho, “GTFS-Madrid-Bench: A Benchmark for Virtual Knowledge
Graph Access in the Transport Domain,” Journal of Web Semantics,
vol. 65, 2020.

https://dl.gi.de/20.500.12116/2434

	Introduction
	Motivating Example
	State of the Art
	Morph-Skyline: OBDA-based Skyline Queries
	Experimental Evaluation
	Conclusions and Future Work
	References

