
morph-GraphQL: GraphQL Servers Generation
from R2RML Mappings (SESE)*

1st Freddy Priyatna
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

fpriyatna@fi.upm.es

2nd David Chaves-Fraga
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

dchaves@fi.upm.es

3rd Ahmad Alobaid
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

aalobaid@fi.upm.es

4th Oscar Corcho
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

ocorcho@fi.upm.es

Abstract—REST has become in the last decade the most
common manner to provide web services, yet it was not originally
designed to handle typical modern applications (e.g., mobile
apps). GraphQL was released publicly in 2015 and since then
has gained momentum as an alternative approach to REST.
However, generating and maintaining GraphQL resolvers is not
easy. First, a domain expert has to analyse a dataset, design
the corresponding GraphQL schema and map the dataset to the
schema. Then, a software engineer (e.g., GraphQL developer)
implements the corresponding GraphQL resolvers in a specific
programming language. In this paper we present an approach
that generates GraphQL resolvers from declarative mappings
specification in the W3C Recommendation R2RML, hence, can
be used both by a domain expert as without the need to
involve software developers to implement the resolvers, and by
software developers as the initial version of the resolvers to be
implemented. Our approach is implemented in morph-GraphQL.

Index Terms—GraphQL, R2RML, OBDA

I. INTRODUCTION

Introduced in 2000, Representational State Transfer (REST)
has become the most common manner to provide web services
in the last few years. Those web services that conform to
the REST principles, known as RESTful web services, use
HTTP/S and its operations to make requests to the underlying
server, such as GET to retrieve objects, POST to add objects,
PUT to modify objects and DELETE to remove objects,
among others.

Over the years, the complexity of modern software concept
has evolved since the inception of REST. For example, typical
mobile applications have to take into account aspects that
receive little attention in traditional applications, such as the
size of data being exchanged/transmitted and the number of
API calls being made. These aspects are relevant to the prob-
lem known as over-fetching and under-fetching. Over-fetching
refers to the situation in which a REST endpoint returns more

DOI reference number: 10.18293/SEKE2019-055

data than what is required by the developer. For example, a
developer may need some information about the name of a user
so she hits the corresponding endpoint (/user). However,
the endpoint may return information that is not needed by the
client, such as birth date and address. The opposite also raises a
problem, which is having the REST endpoint provide less data
than required. Such a case is called under-fetching. It refers to
the situation in which a single REST endpoint does not provide
sufficient information requested by the client. For example, in
order to obtain the names of all friends of a particular user,
typically two endpoints may be needed: the first is the endpoint
that returns the identifiers of all the friends (/friends), and
the second is the one that returns the details of each of the
friends based on the identifier (/user).

In order to ameliorate the aforementioned problems, Face-
book proposed the GraphQL query language [6], initially
being used internally by the company in 2012. GraphQL was
released for public use in 2015 and since then has been
adopted by companies from various sectors such as tech-
nology (GitHub), entertainment (Netflix), finance (PayPal),
travel (KLM), among others. Two main components of a
GraphQL server are schema and resolvers. The GraphQL
schema specifies the type of an object together with the fields
that can be queried. GraphQL resolvers are data extraction
functions implemented in a programming language that are re-
sponsible to translate GraphQL queries into queries supported
by the underlying datasets (e.g. GraphQL to SQL). GraphQL
is supported by multiple GraphQL engines for major pro-
gramming languages (e.g. JavaScript, Python, Java, Golang,
Ruby). In addition to the above mentioned frameworks, query
planning tools have been developed in order to translate
GraphQL queries into other query languages (e.g. dataloader1,
joinmonster2).

1https://github.com/facebook/dataloader
2https://join-monster.readthedocs.io/en/latest/

Generating a GraphQL server requires expertise from both
domain experts and software developers. Typically, the follow-
ing tasks need to be done:

1) A domain expert will analyse the underlying datasets,
propose a unified view schema as a GraphQL schema
and how the source datasets would need to be mapped
into the GraphQL schema. Note that there is no standard
mechanism to represent these mappings (e.g. the domain
expert may use a spreadsheet, which is not necessarily
easy to understand by another domain expert).

2) A software developer then implements those mappings
as GraphQL resolvers, a process that takes significant
resources. Given that the complexity of any given source
code grows faster than the size of the source code, gener-
ating GraphQL resolvers is becoming more difficult even
for a standard-sized dataset which typically contains
more than a handful tables and hundreds of properties.
This situation is even worse if the underlying dataset
evolves considering that the corresponding resolvers
have to be updated as well. GraphQL resolvers may
not be easily understood by new developers who were
not involved in the initial version thus bringing the
possibility of introducing errors.

In this paper we propose the use of W3C R2RML [4]
to specify the mapping rules that relate the source datasets
and the GraphQL schema. The use of R2RML mappings is
based on the idea that the use of a standard mapping language
would facilitate better understanding of the mapping from the
underlying data source and the exposed GraphQL schema.
Furthermore, they also allow for better maintainability as
R2RML mappings are declarative and independent from any
programming language. Our main contribution in this paper is,
taking the advantage that R2RML mappings are declarative,
an approach to translate R2RML mappings to JavaScript-based
GraphQL resolvers.

The rest of the paper is structured as follows: in section
II we review R2RML and GraphQL and in section III we
describe our approach on translating R2RML mappings to
GraphQL resolvers. In section IV we present the queries, based
on the example provided in the reference implementation3, that
we use to test our implementations. Finally, related work and
conclusion are presented in sections V and VI.

II. BACKGROUND

In this section we provide some background on two of
the underlying technologies that we will use: GraphQL and
R2RML. We use the example provided in the reference
implementation based on the Star Wars movies to explain the
background concepts. An overview of its schema in a tabular
model and some of the data is shown in Figure 1.

A. GraphQL

GraphQL is a specification that provides a unified view for
accessing heterogeneous datasets using its query language.

3https://github.com/graphql/graphql-js/

Fig. 1. Tables used in the Star Wars example, inspired by the example
provided in the reference implementation

Besides the query language, the specification defines how
a GraphQL server may be implemented for allowing the
developers to deploy their own implementation in different
programming languages. In this section we describe and
provide an example of the main components of a GraphQL
server: schema and resolvers (query root and type).

type Query {
listEpisode(identifier:String, code:

String): [Episode]
...

}

type Episode {
identifier:String
code:String

}

Listing 1. GraphQL Schema for type Episode

A GraphQL schema specifies all the available types and
their properties. For example, in Listing 1 we can see that the
schema for the Episode type together with its two fields:
identifier and code.

A GraphQL resolver describes the relationship between
the defined GraphQL types/fields and the data sources.

It implements the methods for accessing the data of
each field in a specific dataset. For example, given
the dataset in Figure 1, a GraphQL resolver may pro-
vide queries for retrieving all instances of the defined
GraphQL types (e.g., listAppear, listEpisode,
listCharacter, listFriends, listHeroes).

Listing 2 shows a possible JavaScript implementation of
the resolver for the Episode type. This part of the code
is responsible for filtering out instances based on the fields
identifier or code.

listEpisode: function({identifier,code}) {
let sql = ‘SELECT

‘ex.com/episode/’ || eid AS c1
, ecode AS c2

FROM episodes
WHERE

c1 = ${identifier} AND c2 = ${code}’
let data = db.all(sql);
let allInstances = [];
return data.then(rows => {

rows.forEach((row) => {
let instance = new Episode(

row[‘c1’], row[‘c2’]
);
allInstances.push(instance);

})
return allInstances;

});
}

Listing 2. GraphQL Resolver for Type Episode

B. R2RML

The W3C R2RML Recommendation (September 2012) al-
lows users to specify rules for transforming relational database
content into an R2RML output dataset, the resulting graph
from applying R2RML mappings. The transformation rules
are defined in an R2RML mapping document that contains
a set of Triples Map (rr:TriplesMap). Triples Maps are
used to generate RDF triples from logical tables. A Triples
Map consists of:

• a Logical Table (rr:LogicalTable) that specifies the
source relational table/view.

• a Subject Map (rr:SubjectMap) that specifies the rule
for generating the subjects of the triples.

• a set of Predicate Object Maps
(rr:PredicateObjectMap) that consists of a pair
of Predicate Map (rr:PredicateMap) and Object
Map (rr:ObjectMap) that specify rules for generating
predicate and object of the triples, respectively. If a join
with another Triples Map is needed, a Reference Object
Map (rr:RefObjectMap) may be specified.

A Term Map (rr:TermMap) is either Subject Map, Pred-
icate Map, and Object Map. Term Maps are used to gen-
erate RDF terms, either as IRIs (rr:IRI), Blank Nodes
(rr:BlankNode), or literals (rr:Literal). The values
of the term maps can be specified using a constant-valued
map (rr:constant), a column-valued map (rr:column),
or a template-valued map (rr:template). Furthermore,

additional information such as datatype (rr:datatype) can
also be attached to Term Maps.

In Listing 3 we show the R2RML mapping for the table
Episode where the subject is defined as a template involving
the eid column and a predicate-object pair involving the
ecode column.

<TMEpisodes>
rr:logicalTable [
rr:table "Episodes";

];
rr:subjectMap [
rr:template "ex.com/episode/{eid}";
rr:class schema:Episode

];
rr:predicateObjectMap [
rr:predicate schema:code;
rr:objectMap [rr:column "ecode"]

];
.

Listing 3. R2RML Mapping for Episode

III. APPROACH

Our approach (Figure 2) generates GraphQL servers from
R2RML mappings. Hence, mappings can be created by a
domain expert in a declarative language, without the need for
programming skills, while benefiting from the wide range of
tools available for GraphQL in order to access data stored in
tabular format (i.e., RDB or CSV). The approach consists of
the following steps: 1) the generation of a SQL query, 2) the
generation of schema and 3) the generation of resolvers, from
each Triples Map defined in the mapping document.

Fig. 2. morph-GraphQL workflow. morph-GraphQL receives R2RML
mappings and generates SQL queries to be used in GraphQL resolvers. Then,
it generates a GraphQL server (schema + resolvers) that can be used by a
GraphQL engine to evaluate queries over the RDB data.

Auxiliary Functions. We present here a set of auxiliary
functions that will be used in the functions that generate
resolvers.

• getConstant(TermMap) retrieves the constant c
in the constant-value term map TermMap =
rr:constant "c".

• getColumn(TermMap) retrieves the column col
in the column-value term map TermMap =
rr:column "col".

• templateToSQL(TemplateV alue) converts a
template-value term map into an SQL expression.
For example, given the term map rr:template
"ex.com/episode/{eid}" as the input, this
function may return "ex.com/episode/" || eid
or CONCAT("ex.com/episode/{eid}", eid),
depending on the database system being used.

• transDataType(xsdDataType) that given an XSD
Data Type return the corresponding GraphQL type.
For example, transDataType(“xsd : string”) returns
String.

• join(objs, separator) that joins a collection of
objects objs into a string with the separator separator.
For example, join([1, 2, 3], “AND”) returns "1 AND 2
AND 3".

A. Generating SQL Queries
We present here a set of translation functions that translates

a triples map into the corresponding SQL query to be used in
GraphQL resolvers. This set of functions is adapted from the
work presented in [3], which is used to translate SPARQL
queries into SQL queries without the presence of R2RML
mappings.

• α(TriplesMap) returns a set of logical tables associated
with the triples map TriplesMap, which is the logical
table associated to the triples map TriplesMap and
additionally all the parent tables if TriplesMap contains
Referenced Object Maps.

• β(TermMap) that given a term map TermMap returns
the corresponding SQL expression, that is:

– getConstant(TermMap) if TermMap is a
constant-value map

– getColumn(TermMap) if TermMap is a column-
value map

– templateToSQL() if TermMap is a template-
value map.

• alias(TermMap) generates a unique alias to be used in
the generation of SQL statement

• genPRSQL(TriplesMap) generates a SQL expression
which projects the relevant SQL expresions of a triples
map TriplesMap (i.e., β of Subject Map and all Object
Maps) together with their aliases.

• genCondSQL(TriplesMap) generates a SQL expres-
sion which is evaluted to true if they match the arguments
passed in the resolver functions and additionaly the join
conditions if TriplesMap contains Referenced Object
Maps.

• finally, trans(TM) = "SELECT genPRSQL(TM)
FROM α(TM) WHERE genCondSQL(TM)"
translates a triples map into the corresponding SQL
query.

Example Given Listing 3 as the input, trans generates the
SQL query that can be seen in variable sql in Listing 2.

B. Generating Schema

Algorithm 1 generates a GraphQL schema from a Triple
Map. It simply generates a GraphQL type MappedClass,
where MappedClass is the class specified in the Subject
Map of the Triples Map. The fields of the MappedClass are
identifier and all the mapped predicates in the Predicate
Object Maps of the Triples Map. The datatype of the fields
are the results of function transDataType, which returns the
corresponding GraphQL type from the datatype specified in
the Object Maps of the Triples Map.

Algorithm 1 GenerateSchema(TriplesMap)
SM = TriplesMap.getSubjectMap()
MappedClass = SM.getMappedClass()
POMS = TriplesMap.getPredicateObjectMaps()
Result = "type MappedClass {"
Result += "identifier:String"
for all POM ← POMS do
PM = POM.getPredicateMap()
OM = POM.getObjectMap()
PMConstant = PM.getConstant()
DataType = transDataType(OM.getDataType)
Result += "PMConstant:Datatype"

end for
Result += "}"
return Result

Example Given Listing 3 as the input, Algorithm 1 gen-
erates GraphQL Type Episode that can be seen in Listing
1.

C. Generating Resolvers

Algorithm 2 generates a GraphQL resolver from a
TriplesMap. As for the name of the resolver, we opt for
listMappedClass, that is, a Triples Map whose mapped
class is Episode will generate a resolver listEpisode.
This resolver will use the SQL query generated from section
III-A, execute the SQL query on the underlying database
engine, and then generate the corresponding instances by
calling the constructor of Type MappedClass.

Example Given Listing 3 as the input, Algorithm 2 gener-
ates resolvers that can be seen in Listing 2.

IV. IMPLEMENTATION AND QUERIES

As of the time of writing, we have implemented morph-
GraphQL4, an open source tool to translate R2RML map-
pings into Javascript-based GraphQL resolvers. Currently, it

4https://github.com/oeg-upm/morph-graphql, deployed at http://graphql.
morph.oeg-upm.net

Algorithm 2 GenerateQueryRoot(TriplesMap)
SM = TriplesMap.getSubjectMap()
MappedClass = SM.getMappedClass()
POMS = TriplesMap.getPredicateObjectMaps()
PMSConstants = [identifier]
for all POM ← POMS do
PM = POM.getPredicateMap()
PMConstant = PM.getConstant()
PMSConstants.push(PMConstant)

end for
Result = ""
Result += "listMappedClass:
functions(PMSConstants.join(”, ”)) {"
Result += "sql = trans(TriplesMap)"
Result += "rows = db.all(sql)"
Result += "allInstances = []"
for all row ← rows do
args = []
for all POM ← POMS do
PM ← POM.getPredicateMapping()
PMConstant← PM.getConstant()
args.push(row.[alias(PMConstant)])

end for
Result += "instance = new
MappedClass(args)"
Result += "allInstances.push(instance)"
Result += "return allInstances"

end for
Result += "}"
return Result

is able to generate resolvers for accessing tabular datasets,
such as RDB or CSV files. We use the JoinMonster library5

to generate efficient SQL queries when joins are needed.
Due to the recent emergence of GraphQL, and as far as

we are aware of, there has not been any standard benchmark
or test-case proposed for evaluating the conformance and
performance of a GraphQL-compliant framework. In order
to test our approach, we use a set of GraphQL queries
with various degrees of complexity proposed in the example
of the reference implementation. First, we serialize the Star
Wars instance data in a tabular format (Figure 1) and then
generate its corresponding R2RML mapping document. Then
we evaluate the queries in Table I. All the information about
the dataset, mapping and queries and their results is available
online6. Additionally, a GraphQL server that is ready to answer
those queries has been also deployed7.

The initial version of morph-GraphQL presented in this
paper shows that an R2RML mapping document can be used
to generate automatically GraphQL resolvers. Besides, the
implementation of the resolvers is able to cover various levels

5https://join-monster.readthedocs.io
6https://github.com/oeg-upm/morph-graphql/wiki/Example-Star-Wars
7http://starwars.graphql.oeg-upm.net/graphql

TABLE I
STAR WARS QUERIES

No Description Tables Involved

Q1 Query the hero
of every episode heroes, episodes, characters

Q2 Query for the id
and friends of R2-D2 characters, friends

Q3 Query for Luke Skywalker
directly, using his ID characters

Q4 Query for both Luke and Leia characters
Q5 Verify that R2-D2 is a droid characters, types

Q6 Verify that the hero of
episode Empire is a human heroes, characters, types, episodes

of query complexity so that it can be used as a tool for
accessing heterogenous datasets via GraphQL queries.

V. RELATED WORK

Several works are at the intersection of GraphQL and
Ontology-Based Data Access (OBDA) [9]. In OBDA, on-
tologies are used as a global view over heterogeneous lo-
cal datasets and the relationship between them is specified
by mappings. R2RML is an example of declarative OBDA
mappings whose focus is the generation of ontology instances
from relational databases. Other related declarative proposals
are: RML [5] (to deal with CSVs, JSON and XML data
sources), xR2RML [8] (to deal with MongoDB), KR2RML
[12] (to deal with nested data) or RMLC-Iterator (for statistical
CSV files) [2]. Two techniques for answering queries over the
global schema are: data translation and query translation. In
data-translation, a set of mapping rules is used to generate
the instances of the global schema and then those instances
are materialised in a triple store so that queries posed over
the global schema can be evaluated by the triple store. In
query-translation, queries over the global schema are translated
into queries over the local schema, taking into account the
information provided in the mappings, thus eliminating the
need of materialisation.

The GraphQL-LD specification is proposed in [14], where
the authors include a context to GraphQL queries, similar as
it is proposed in JSON-LD [13]. The goal of this work is to
translate GraphQL queries to SPARQL queries for querying
RDF interfaces and provide a more friendly interface for the
developers. Ontop [1] proposed several semantic optimisa-
tion techniques to generate efficient SQL queries resulting
from the translation of SPARQL queries taking into account
R2RML mappings. morph-RDB [10] presented an R2RML-
based SPARQL to SQL query translation based on the ap-
proached proposed by Chebotko et. al [3]. The approach
that we proposed in the paper can be considered as a query
translation technique as it allows the answering of GraphQL
queries over local datasets without materialising them, by
translating R2RML mappings into GraphQL resolvers and
delegate the query evaluation to GraphQL engines. Note,
however, unlike previous approaches that take a query as
their input in their run-time, morph-GraphQL is compile-time,
in sense that the generation of SQL and GraphQL resolvers

TABLE II
SUMMARY OF APPROACHES

Proposal Input Output Type
Chebotko et al SPARQL SQL run time

morph-RDB
SPARQL

+
R2RML

SQL run time

ontop
SPARQL

+
R2RML

SQL run time

GraphQL-LD GraphQL SPARQL run time

morph-GraphQL R2RML SQL + GraphQL
(Schema & Resolvers)

compile
time

are only executed once. We summarise the aforementioned
approaches in Table II.

Another relevant work is [7], in which the authors analyse
and formalise the semantics and the complexity of GraphQL.
Their theoretical study can be used for further analysis of
the query language while their technical contributions help
GraphQL developers to implement more robust interfaces for
the web.

VI. CONCLUSION

In this paper we have presented an approach to generate
GraphQL resolvers from R2RML mappings together with its
corresponding implementation, morph-GraphQL. Note that we
do not aim to replace the traditional approach of generating
GraphQL schema/resolvers manually, but we position this
approach as supplementary approach. This is to say, this
approach allows domain experts to use the generated schema
and resolvers as the initial proof of concept that can be used
to query datasets without the need for software engineers to
develop a full-fledged GraphQL server. Software engineers
may also benefit from our approach as they may also use
morph-GraphQL to generate the initial version of a GraphQL
server instead of building it from scratch. In the future, we
plan to support more programming languages (e.g. Java) and
more data formats (e.g. JSON) and integrate morph-GraphQL
with Mappingpedia [11], a repository for R2RML mappings.
We also plan to evaluate our approach comparing the time
taken by a domain expert to generate R2RML mappings and
a software engineer programming a GraphQL resolver.

ACKNOWLEDGMENT

We are thankful to Nandana Mihindukulasooriya, Anastasia
Dimou, Ben de Meester and Pieter Heyvaert, who helped us
in the identifying the main contributions of our approach.
The work presented in this paper is supported by the Spanish
Ministerio de Economı́a, Industria y Competitividad and EU
FEDER funds under the DATOS 4.0: RETOS Y SOLU-
CIONES - UPM Spanish national project (TIN2016-78011-
C4-4-R) and by an FPI grant (BES-2017-082511).

REFERENCES

[1] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman
Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and
Guohui Xiao. Ontop: Answering sparql queries over relational databases.
Semantic Web, 8(3):471–487, 2017.

[2] David Chaves-Fraga, Freddy Priyatna, Idafen Perez-Santana, and Oscar
Corcho. Virtual statistics knowledge graph generation from CSV files. In
Emerging Topics in Semantic Technologies: ISWC 2018 Satellite Events,
volume 36 of Studies on the Semantic Web, pages 235–244. IOS Press,
2018.

[3] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. Semantics pre-
serving SPARQL-to-SQL translation. Data & Knowledge Engineering,
68(10):973–1000, 2009.

[4] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB
to RDF Mapping Language. https://www.w3.org/TR/r2rml/. Accessed:
2018-12-07.

[5] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle. RML: A Generic Language for
Integrated RDF Mappings of Heterogeneous Data. In LDOW, 2014.

[6] Facebook, Inc. GraphQL. https://facebook.github.io/graphql/June2018/,
2018. Accessed: 2018-12-07.

[7] Olaf Hartig and Jorge Pérez. Semantics and complexity of GraphQL.
In Proceedings of the 2018 World Wide Web Conference on World Wide
Web, pages 1155–1164. International World Wide Web Conferences
Steering Committee, 2018.

[8] Franck Michel, Loı̈c Djimenou, Catherine Faron-Zucker, and Johan
Montagnat. Translation of relational and non-relational databases into
RDF with xR2RML. In 11th International Confenrence on Web
Information Systems and Technologies (WEBIST’15), pages 443–454,
2015.

[9] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. Linking data to
ontologies. In Journal on data semantics X, pages 133–173. Springer,
2008.

[10] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. Formalisation and
experiences of R2RML-based SPARQL to SQL query translation using
morph. In Proceedings of the 23rd international conference on World
wide web, pages 479–490. ACM, 2014.

[11] Freddy Priyatna, Edna Ruckhaus, Nandana Mihindukulasooriya, Óscar
Corcho, and Nelson Saturno. Mappingpedia: A collaborative environ-
ment for R2RML mappings. In European Semantic Web Conference,
pages 114–119. Springer, 2017.

[12] Jason Slepicka, Chengye Yin, Pedro A Szekely, and Craig A Knoblock.
KR2RML: An alternative interpretation of r2rml for heterogenous
sources. In COLD, 2015.

[13] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and
Niklas Lindström. Json-ld 1.0. W3C Recommendation, 16:41, 2014.

[14] Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. GraphQL-
LD: Linked Data Querying with GraphQL. In ISWC2018, the 17th
International Semantic Web Conference, 2018.

