
SAD Generator: eating our own dog food
to generate KGs and websites for academic events

Pieter Heyvaert1, David Chaves Fraga2,
Freddy Priyatna2, Juan Sequeda3, and Anastasia Dimou1

1 IDLab, Dept of Electronics and Information Systems, Ghent University – imec
{pheyvaer.heyvaert,anastasia.dimou}@ugent.be

2 Ontology Engineering Group, Universidad Politécnica de Madrid
{dchaves,fpriyatna}@fi.upm.es

3 Capsenta
juan@capsenta.com

Abstract. Nowadays, a website is used to disseminate information about
an event (e.g., location, dates, time). In the academic world, it is com-
mon to develop a website for an event, such as workshops or conferences.
Aligning with the “Web of data”, its dissemination should also happen by
publishing the information of the event as a knowledge graph, e.g., via
RDF that is available through a SPARQL endpoint or a Triple Patterns
Fragment server. However, the RDF generation and website development
is not always straightforward and can be time-consuming. In this demo,
we present the Semantic Academic-event Dissemination (SAD) Genera-
tor for generating RDF and websites for academic events. The generator
allows to (i) annotate CSV files that contain academic event data and
use the annotations to generate a knowledge graph and (ii) generate a
website with the information for the event querying the knowledge graph.
We used our generator to generate the RDF and website of a real work-
shop, the KGB workshop. It can be easily reused by organizers of other
academic events by simply providing the event’s information in CSV files.

Keywords: RML · RDF · GraphQL · SPARQL · YARRRML

1 Introduction

In many domains, a website is one of the most frequent dissemination tools used
to reach a wide range of audiences. Typically, a website is generated when an
event is organized, containing useful information for potential attendees, such as
the location, the dates or its main description. In the academic world, different
kinds of event are usually organized, such as conferences, workshops, research
schools or seminars where a corresponding website may be provided.

In the context of workshops and conferences, the information showed by
their websites has usually the same structure. The website may show general
information about the event (name, dates, location), call for papers together
with corresponding topics, organizers, important dates and program committee.

This data can be easily defined using semi-structured data formats, such as CSV
files or Excel files.

The resources of the event should also be published as a knowledge graph
to be aligned with the “Web of data”, following the Semantic Web/Linked Data
approach: instances are identified by URLs and their types and properties are
properly annotated. However, this step is usually seen as an additional feature
for the dissemination, so it is avoided and, even if done, it remains unrelated
to the website generation process. In fact, many of these websites obtain the
data from isolated data sources where the used format is selected by the Web
developer (e.g, databases, JSON or XML) and the data model is specific for each
case. Recommendations, like RDFa, provide mechanisms to solve some of these
issues, but its uptake is low, as it needs a manual intensive effort.

In this demo paper, we propose the SAD Generator4, a Semantic Academic-
event Dissemination Generator that uses Semantic Web technologies to generate
a knowledge graph and website for academic events. This knowledge graph pro-
vides the data for generating the website. Furthermore, the knowledge graph can
be made available via, e.g, a SPARQL endpoint or a Triple Pattern Fragments
(TPF) server. We use this generator to build the knowledge graph and website
of Knowledge Graph Building Workshop 20195 (co-located with ESWC2019).

2 The SAD Generator

When using our generator two main steps are executed: (i) the knowledge
graph is built based on the raw data and, then, (ii) the website is generated
based on this graph (see Figure 1). To achieve that, our generator considers
the following data: (i) CSV files provided by the organizers of the event and
describe the workshop itself, the organizers, programme committee (PC), topics,
subtopics, and important dates; (ii) the knowledge graph that is generated
based on the CSV files; and (iii)HTML pages of the website that are generated
based on the knowledge graph. In the remaining, we discuss the two steps in
more details: in Section 2.1, we discuss how the knowledge graph is built and,
in Section 2.2, we elaborate on the website’s generation.

2.1 Building the knowledge graph

In this section, we discuss the data model used for the knowledge graph, and
the YARRRML rules [1], created based on the data model, that are executed to
build the knowledge graph based on the CSV files.

Data model We annotate the different entities defined in the raw data semanti-
cally mostly using the Schema.org vocabulary to increase their reusability and
sharability. A workshop is annotated as an event with the class schema:Event.
The name, duration, conference co-located event, location, start date and end
4 Available online at: https://github.com/kgb-workshop/sad-generator
5 http://kgb-workshop.org/

2

Fig. 1. SAD Generator workflow

date are added as datatype properties. The organizers, program committee,
(sub)topics, and important dates are added as object properties. Organizers
and PC members are annotated as a person with the class schema:Person. Im-
portant dates are annotated as events with the class schema:Event and for the
sub(topics) we use the class schema:CreativeWork.

Listing 1.1. YARRRML rules for the PC members
sour c e s :
− [" csv /pc . csv∼csv "]

s : https : // kgb−workshop . org / r e s ou r c e s /ProgramCommittee/$ (id)
po :

− [a , schema : Person]
− [schema : name , $ (name)]
− [schema :memberOf , $ (o r gan i z a t i on)]
− [schema : performerIn ,

https : // kgb−workshop . org / r e s ou r c e s /Event/kgb2019∼ i r i]

YARRRML rules Based on the structure of the CSV files and the data model, we
use Matey6 to define the corresponding YARRRML rules to build the knowledge
graph7. These rules converted to RML rules [2] using the YARRRML Parser8.
Initially, the RML rules are executed using the RMLMapper9, which outputs the
6 http://rml.io/yarrrml/matey/
7 https://github.com/kgb-workshop/sad-generator/blob/master/kg/mapping.
yml

8 https://github.com/rmlio/yarrrml-parser
9 https://github.com/rmlio/rmlmapper-java

3

first version of the knowledge graph as RDF. If the data is updated, we execute
the RML rules again and a new knowledge graph is build. If the structure of the
CSV files or the data model is updated, we update the YARRRML rules and
convert them to RML rules, and execute the latter to build a new knowledge
graph. The YARRML rules that define how to generate RDF describing the PC
members can be found in Listing 1.1. They state that the relevant CSV file can
be found in the folder csv, the URL of PC member is generated based on the id
of a member, and that members are annotated with the class schema:Person,
their name, organization and event they are performing in.

2.2 Generating the website

In this section, we discuss how we use an existing static site generator, Eleventy10,
to generate a website based on our knowledge graph: how the graph is queried
and how the results of the queries are used to generate the HTML. We use a
static site generator to reduce complexity, i.e., only a static file server is needed
to host the website, and improve scalability, i.e., the website can be easily repli-
cated.

We need to query the knowledge graph for the relevant data to be used in the
HTML pages. We use a Comunica engine to execute GraphQL-LD queries on
the RDF file. Comunica [3] is a highly modular and flexible meta query engine
for the Web that allows executing queries across different RDF data sources, in-
cluding RDF files, SPARQL endpoints, and TPF servers. GraphQL-LD [4] brings
GraphQL to RDF: GraphQL-LD queries are translated to SPARQL queries. We
use GraphQL-LD because of the Web developer-friendly approach of GraphQL
and because the output of these queries are JSON arrays, which can then be
used by template languages, such as Liquid11, to build HTML pages. Comunica
allows building a query engine that supports these GraphQL-LD queries on RDF
files, which we use with Eleventy to query our knowledge graph12.

Listing 1.2. GraphQL-LD query to re-
trieve the list of PC members
{ . . . on Person

{
name
a f f i l i a t i o n
event (_: workshop)

}
}

Listing 1.3. Result of GraphQL-LD
query
[{ name : "Amrapali Zaver i " ,

a f f i l i a t i o n :
"Maastr icht Un ive r s i ty "

} , . . .
]

Listing 1.4. Using the results in HTML

{% f o r person in programcommittee %}

10 https://11ty.io
11 https://shopify.github.io/liquid/
12 https://github.com/pheyvaer/graphqlld-on-file

4

<l i >{{person . name}} , {{ person . a f f i l i a t i o n }}</ l i >
{% endfor %}

In Listing 1.2 the GraphQL-LD query that returns the PC members can
be found. We only look for persons in our knowledge graph that have a name,
affiliation, and that perform in a specific workshop. The URL of the workshop is
assigned to workshop. The result is a JSON array containing an object for each
PC member (see Listing 1.3). These objects are used in an HTML template with
Liquid to list all the PC members (see Listing 1.4).

During the demo, we show how users can easily use the generator for their
own events and how the changes to the CSV files result in an updated knowledge
graph and website. Furthermore, we have already used this generator to build the
knowledge graph13 and the website14 of Knowledge Graph Building Workshop
2019 (co-located with ESWC2019).

Acknowledgements

The described research activities were funded by Ghent University, imec, Flanders
Innovation & Entrepreneurship (AIO), the Research Foundation – Flanders (FWO),
and the European Union. The work presented in this paper is partially supported by the
Spanish Ministerio de Economía, Industria y Competitividad and EU FEDER funds
under the DATOS 4.0: RETOS Y SOLUCIONES - UPM Spanish national project
(TIN2016-78011-C4-4-R) and by an FPI grant (BES-2017-082511).

References

[1] Pieter Heyvaert et al. “Declarative Rules for Linked Data Generation at
Your Fingertips!” In: European Semantic Web Conference. Springer. 2018,
pp. 213–217.

[2] Anastasia Dimou et al. “RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data”. In: LDOW. 2014.

[3] Ruben Taelman et al. “Comunica: a modular SPARQL query engine for the
web”. In: International Semantic Web Conference. Springer. 2018, pp. 239–
255.

[4] Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. “GraphQL-LD:
Linked Data Querying with GraphQL”. In: ISWC2018, the 17th Interna-
tional Semantic Web Conference. 2018.

13 https://github.com/kgb-workshop/data
14 https://github.com/kgb-workshop/website

5

