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Abstract. A large number of datasets are made publicly available on a
wide range of formats. Due to interoperability problems, the construc-
tion of RDF-based knowledge graphs (KG) using declarative mapping
languages has emerged with the aim of integrating heterogeneous sources
in a uniform way. Although the scientific community has actively con-
tributed with several engines to solve the problem of knowledge graph
construction, the lack of testbeds has prevented reproducible bench-
marking of these engines. In this paper, we tackle the problem of eval-
uating knowledge graph creation, and analyze and empirically study
a set of variables and configurations that impact on the behaviour of
these engines (e.g. data size, data distribution, mapping complexity).
The evaluation has been conducted on RMLMapper and the SDM-
RDFizer, two state-of-the-art engines that interpret the RDF Mapping
Language (RML) and transform (semi)-structured data into RDF knowl-
edge graphs. The results allow us to discover unknown relations between
these engines that cannot be observed in other configurations.
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1 Introduction

Following the FAIR principles [19] and Open data initiatives, the size of publicly
available data has grown exponentially in the last decade, expecting a faster
growth rate in the following years as a result of the advances in the technologies
for data generation and ingestion. In order to extract values for existing datasets,
several data integration approaches have been proposed in the literature [5]. The
Semantic Web community has also proposed various approaches that enable the
integration of data presented in diverse formats into a knowledge graph. Knowl-
edge graphs comprise data and the knowledge that describe the main charac-
teristics of the integrated data following a graph-based data model, e.g. RDF
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[18]. With the aim of transforming structured data in tabular or nested formats
like CSV, relational, JSON, and XML, into RDF knowledge graphs, diverse map-
ping languages have been proposed. Exemplary mapping languages include RDF
Mapping Language (RML) [3], R2RDF [16], xR2RML [12], and R2RML [2], as
well as tools like KARMA [4], SPARQL-Generate [11], and DIG [9]. Despite
these developments, the absence of testbeds has prevented the community from
conducting fair evaluations of the existing tools for knowledge graph creation.
This testbed deficiency has also impeded for a holistic understanding about the
pros and cons of the state of the art, as well as for clear directions to advance the
area. Given the expected growth rate of available data, testbeds are demanded
in order to devise the next generation of tools able to integrate data at scale.

Our Goals: We study the process of knowledge graph creation and analyze vari-
ous variables and configurations that can impact on the performance of RDFizers
– tools for transforming (semi)-structured data following mapping rules specified
in the RDF Mapping Language (RML). The relevant parameters studied in this
paper include selectivity of the joins between mapping rules, types of relations,
and percentage of duplicates. We also present diverse examples that evidence the
heterogeneous behaviour that each RDFizer may exhibit whenever small changes
are conducted to the variables and the configurations of a testbed.

Our Approach: We devise a set of parameters involved in a knowledge graph
construction process and we empirically show how they can impact on the
behaviour of two existing RDFizers: RMLMapper1 and SDM-RDFizer2; these
engines are compliant with the RML specification according to a set of defined
test-cases3. We develop a synthetic data generator for the generation of (semi)-
structured data and RML mapping rules, that consider the identified set of
parameters. The results of our empirical study provide evidence of the impor-
tance of the proposed set of variables and configurations during the evaluation of
these tools. The testbeds used to conduct this evaluation are available online4.

Contributions: Our main contribution includes the definition of various dimen-
sions and set of variables to be considered during the creation of testbeds or to be
measured while the evaluation of knowledge graph construction tools. Another
contribution represents the empirical evaluation of the effects that the variables
and configurations have on the tasks of knowledge graph creation. Furthermore,
the results of the experimental study contribute to the understanding of the pros
and cons of the studied RDFizers, and the directions that need to be followed
in order to devise tools able to scale up to real-world scenarios.

The remainder of this article is structured as follows: Sect. 2 presents several
examples where the evaluated tools exhibit unexpected behaviours. Section 3
analyses the variables and configurations that need to be considered in a testbed
in order to ensure reproducibility and generality during benchmarking. Section 4

1 https://github.com/RMLio/rmlmapper-java.
2 https://github.com/SDM-TIB/SDM-RDFizer.
3 http://rml.io/implementation-report/.
4 https://github.com/SDM-TIB/KGC-Param-Eval.

https://github.com/RMLio/rmlmapper-java
https://github.com/SDM-TIB/SDM-RDFizer
http://rml.io/implementation-report/
https://github.com/SDM-TIB/KGC-Param-Eval
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Fig. 1. Motivating example. RML triple maps to transform two CSV files into RDF.
TripleMap1 is composed of two predicate-object, i.e., Two POM. TripleMap2 has a join
to TripleMap1; Observation.csv (outer relation) is joined to Sensor.csv (inner relation)
and the result, SensorID, is used as an object value.

reports on the results of the empirical study where several parameters and con-
figurations are evaluated. Related work is presented in Sect. 5, and finally, Sect. 6
concludes and give insights for future work.

2 Motivating Examples

We motivate our work by analysing different scenarios where the performance
of RMLMapper and SDM-RDFizer may be affected by changing the configura-
tion of the testbeds utilised for empirically evaluating these engines. We aim at
remarking the importance of taking into account different parameters during the
definition of a testbed. We first describe a scenario where näıve parameters (size
and format) leads to wrong decisions during the comparing of SDM-RDFizer
and RMLMapper. The testbeds include a data source with one thousand rows,
different number of predicate-object (POM) in RML triple maps, and diverse
configurations of selectivity of triple map joins.

RML expresses mappings to transform sources represented in (semi)-
structured format, e.g. CSV or XML, into RDF. Each mapping rule in RML,
named RML triple map, is represented in RDF and consists of the following
parts [3]:

– A Logical Source that refers to a data source from where data is collected.
– A Subject Map that defines the subject of the generated RDF triples.
– Predicate-Object Maps (POM) that expresses the predicate and the object

the RDF triple to be generated; a triple map can comprise several POMs.
– A Referencing Object Map, that indicates the reference or join condition to

another triple map; the subject URL is the referenced triple map corresponds
to the result of the evaluation of the join.

Figure 1 illustrates two RML triple maps. TripleMap1 is composed of two
predicate-object maps, i.e. it is a Two POM mapping rule. TripleMap2 has
a referencing object map that joins the records of file Observation.csv with
the records of the file Sensor.csv on the attributes SensorLocation and
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ObservationLocation. The result of executing the join between the two RML
triple maps is the identifier of the sensor that collected the observation; this
value is used as the object value of the predicate observationSensor.

2.1 Impact of Number of Predicates and Objects in Mapping Rules

In this example, we execute a testbed where three different configurations of an
RML mapping rule: Two-POM, Five-POM, and Ten-POM, i.e. they correspond
to three mapping rules with two, five, and ten Predicate-Object Maps, respec-
tively. Both RDFizers exhibit a similar behaviour while the number of predicate-
object maps varies from two to five POMs, as shown in Table 1. However, when
more complex mapping rules with more POMs are considered, the behaviour
of the SDM-RDFizer and RMLMapper is not impacted equally. Moreover, the
results suggest that RMLMapper execution time increases with the number of
POMs, while the SDM-RDFizer seems to be slightly affected.

Table 1. Impact of Number of Predicate-Object Maps. Various predicate object
maps (POM) specified in the mapping rules. The behaviour of the two RDFizers is
similar when the mapping rules are simple (less than 5 POM) but it is different when
more complex mappings are running (10 POM).

Engine Execution time (secs.) Number of results

Two POM

RMLMapper 0.92 2,000

SDM-RDFizer 1.72 2,000

Five POM

RMLMapper 1.84 5,000

SDM-RDFizer 1.85 5,000

Ten POM

RMLMapper 3.36 10,000

SDM-RDFizer 1.98 10,000

2.2 Impact of Join Selectivity

We consider the join selectivity, i.e. the cardinality of matching values from
outer to the inner table (relation), in a referencing object map between two RML
mapping rules; Fig. 1 depicts an example of a join between two RML triple maps.
The join selectivity varies from High Selectivity, Medium Selectivity, and
Low Selectivity, and Table 2 reports on the results of RMLMapper and SDM-
RDFizer. First, it can be observed that the RMLMapper execution time increases
by around 8 seconds, while the SDM-RDFizer behaviour is not equally affected
by the selectivity of the join condition. As can be seen in Table 2, the SDM-
RDFizer execution time (in seconds) increases from high to medium selectivity
by 0.04 (from 2.16 to 2.20), then decreases from medium to low selectivity by
0.01 (from 2.20 to 2.19). On the other hand, the RMLMapper execution time
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increases by 1.83 (from 38.6 to 40.43), and 5.63 (from 40.43 to 46.06) seconds
from high to medium, and medium to low selectivity, respectively. As in the
previous example, both engines are not equally affected by the complexity of the
testbed.

Table 2. Impact of Join Selectivity. Impact of the join selectivity variable over the
RDFizers with high, medium and low percentage of selectivity. While RMLMapper
engine behaviour increases in terms of execution time when the selectivity decreases,
the SDM-RDFizer behaviour is maintained, i.e. this variable affects to the first engine
but it does not impact equality to the second one.

Engine Execution time (secs.) Number of results

High Selectivity

RMLMapper 38.6 2,100

SDM-RDFizer 2.16 2,100

Medium Selectivity

RMLMapper 40.43 23,000

SDM-RDFizer 2.20 23,000

Low Selectivity

RMLMapper 46.06 30,000

SDM-RDFizer 2.19 30,000

The uncorrelated behaviour of studied RDFizers shows clearly the need to
considering diverse variables and configurations during the definition of testbeds,
and thus, uncovering characteristics of these engines. In this paper, we analyze
the parameters that might affect a knowledge graph construction process and
evaluate some of the most problematic ones (e.g. partitioning, relation type) to
remark the importance of setting them during testbed design.

3 Relevant Parameters for Testbed Design

In this section, we perform a study of the parameters that have impact on the
knowledge graph construction engines. First, we identify the generic groups of
parameters involved and the effect they produce in this process. Second, we
provide a list of specific variables that influence the construction of knowledge
graphs and determine the relationships among them. Finally, we describe each
parameter in detail given the reasons why it might affect the performance of
the engines. Together with these descriptions, we provide use cases over a set of
parameters to illustrate the importance of involving them in a testbed definition.

As in every empirical study, we consider two groups of variables: independent
and observed. The independent variables are those features that need to be spec-
ified in a benchmark to ensure that the performed evaluation is reproducible.
These variables are grouped in five dimensions: mapping, data, platform, source,
and output. On the other hand, observed variables correspond to those charac-
teristics that are measured during the evaluation of the testbed and that may
be influenced by independent variables. The observed variables are as follows:



700 D. Chaves-Fraga et al.

– Execution time: The variable is in turn comprised of: (i) Time for the first
triple (elapsed time between the engine starts and the first triple), (ii) total
execution time required to produce all the triples of the knowledge graph.

– Completeness: Number of returned triples in relation to all the RDF triples
that should be created according to the data and input mappings.

The relations among independent and observed variables are presented in
Table 3. These variables are described in detail in the next section.

3.1 Mapping Dimension

This dimension involves the variables that characterise the mappings in terms of
their structure and evaluation. Regarding the structure, there are various aspects

Table 3. Variables and Configurations. Set of variables and configurations that
impact on the behaviour of the tools for knowledge graph creation. Independent vari-
ables are divided into five groups and the impact on the observed variables is depicted.

Independent variables Observed variables

Execution time Completeness

Mapping mapping order �
# triplesMap � �
# predicateObjectMaps � �
# predicates � �
# objects � �
# joins � �
# named graphs � �
join selectivity � �
relation type � �
object TermMap type �

Data dataset size �
data frequency distribution �
type of partitioning � �
data format � �

Platform cache on/off �
RAM available �
# processors �

Source distribution data transfer � �
initial delay �
access limitation � �

Output Serialization � �
Duplicates � �
Generation type � �
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to be considered: mapping order, the complexity of the mapping in terms of
number of predicates, objects, and the join type and selectivity.

Mapping Order. Although the mappings are usually defined using an RDF
serialisation, where the order is not relevant, the features of each rr:tripleMap
(e.g. joins) can affect the execution plan generated by each tool, having, thus, a
potential negative impact on the total execution time.

Table 4. Impact of Relation Types. Various relation types in a join specified in
the mapping rules. N corresponds to 15 values in the case of 1−N and N−1 relations,
N and M has 10 values in the last case. RMLMapper execution time is not affected
by 1−N and N−1 relation types while it is affected by N−M relations. SDM-RDFizer
performs better in N−1 than 1−N but the time increases in N−M.

Engine Execution time (secs.) Number of results

1−1

RMLMapper 42.86 25,000

SDM-RDFizer 2.19 25,000

1−N

RMLMapper 43.34 22,490

SDM-RDFizer 2.19 22,490

N−1

RMLMapper 43.26 22,490

SDM-RDFizer 2.15 22,490

N−M

RMLMapper 78.64 25,200

SDM-RDFizer 2.33 25,200

Mapping Complexity. The number of properties defined in a rule mapping,
e.g. number of predicates, objects, or named graphs may affect the observed
variables because the number of triples to be generated, is related to what is
specified in the mappings. Additionally, the rr:termtype of the rr:objectMap
can affect the total execution time because the cost of generating a constant or a
template is not the same. Finally, the join selectivity (as illustrated in Sect. 5) and
types of relation have also impact on the performance of an RDFizer. In Table 4,
we illustrate how the relation type affects the total execution time of the studied
RDFizers. In this case, the behaviour of the RMLMapper only occurs when the
relation type is N−M. However, the SDM-RDFizer behaviour is impacted during
the evaluation of 1−N and N−M joins. Additionally, during the join evaluation,
there are many cases when duplicates are generated, then the engines have to
eliminate them. Table 5 reports on how the generation of the duplicates –during
the join condition evaluation– affects the total execution time. RMLMapper
decreases its performance while the percentage of duplicates increases. However,
SDM-RDFizer implements optimised data structured that allow for efficiently
eliminating duplicates, and seems not to be equally affected by the complexity
of these configurations, e.g. number of duplicates.
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3.2 Data Dimension

We describe the independent variables related with the original data that are
required for the generation of a knowledge graph. Each dataset can be defined in
terms of size and total number of sources. The first characteristic impacts on
the number of triples that will be generated, affecting, thus, the total execution
time. Additionally, the total number of sources that have to be processed to
generate a knowledge graph may also affect the total execution time.

Table 5. Impact of duplicates generation during join evaluation. Various con-
figurations of duplicates generated during the evaluation of a join between two triple
maps. While the complexity of the configuration increases (more percentage of dupli-
cates), the RMLmapper decreases its performance. Surprisingly, the SDM-RDFizer
seems not to be affected by the complexity of the testbeds, and improves its perfor-
mance even when the complexity of testbeds increases.

Engine Execution time (secs.) Number of results

Low percentage of duplicates

RMLMapper 37.94 20,027

SDM-RDFizer 2.01 20,027

Medium percentage of duplicates

RMLMapper 39.201 20,105

SDM-RDFizer 1.87 20,105

High percentage of duplicates

RMLMapper 40.81 20,263

SDM-RDFizer 1.89 20,263

Partitioning and distribution are important variables considered in the gen-
eration of a knowledge graph. Partitioning refers to the way that a dataset is
fragmented, and distribution is the format (e.g. CSV, JSON) of each partition.
A dataset can be presented in only one format or in multiples formats, and
this variable affects not only the total execution time but also the complete-
ness of the results. A dataset may be fragmented into disjointed partitions; the
partition may be horizontal, vertical or a combination of both. Horizontal parti-
tioning fragments the dataset, so that, they represent different instances of the
same resource (equal TripleMaps with different sources). Vertical partitioning
produces fragments that contain at least one property of the same resources
(TriplesMaps with JoinCondition). The horizontal partitioning may affect the
completeness of a knowledge graph while the vertical partitioning has an influ-
ence on the execution time. Table 6 compares the behaviour of the RMLMapper
and SDM-RDFizer with different configurations. The two engines increase their
execution time when the horizontal partitioning is compared with and without
including replication. However, RMLMapper decreases its execution time when
the vertical partitions with and without replication are compared, while SDM-
RDFizer execution time increases. Thus, even SDM-RDFizer is tailored towards
efficient duplicate elimination, data partitioning– with and without replication –
seems to affect the SDM-RDFizer performance.
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Table 6. Impact of Partitioning: Various configurations of vertical and horizontal
partitioning with and without duplicates. The two engines perform similar with the
two cases of the horizontal partitioning but they have different behaviours in vertical
partitioning.

Engine Execution time (secs.) Number of results

Horizontal partitioning without replication

RMLMapper 1,904.31 310,000

SDM-RDFizer 4.84 310,000

Vertical partitioning without replication

RMLMapper 2,067.77 310,000

SDM-RDFizer 4.73 310,000

Horizontal partitioning with replication

RMLMapper 2,276.98 310,000

SDM-RDFizer 5.86 310,000

Vertical partitioning with replication

RMLMapper 2,024.66 310,000

SDM-RDFizer 4.98 310,000

3.3 Platform Dimension

The platform dimension comprises variables related with the hardware used to
create a knowledge graph. We include a set of variables related with the sys-
tem cache, the available RAM memory for running the tool, and the number
of processors of the machine. The cache and the available RAM memory
may affect the total time execution. We recommend that other parameters, like
the versions of operating system and processor, should be specified in the eval-
uation setup. To conclude, during testbed design, the platform and hardware
specification requires attention and needs to be defined in detail.

3.4 Source Dimension

In this dimension, we consider different variables related with the original sources
defined in the mapping rules. The distribution data transfer, which corre-
sponds to the transfer time of a file by a Web service–in case the data is not in
a local machine– will definitely influence the total execution time. Additionally,
the initial delay of each engine to configure the corresponding wrappers for
each data format and the limit access for example, a database, also strikes out
the execution time and the completeness of the results.

3.5 Output Dimension

In this dimension, we consider the variables related with the output of the gener-
ation process. The serialization impacts on the total execution time; the effect
will depend on the size of the output and the number of times the processor
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has to access the disk to store the output. Generation type represents how an
RDFizer generates a knowledge graph. The generation can be continuous, e.g.
the SDM-RDFizer stores each RDF triple in a file once it is generated. Contrary,
the generation can be in-memory, e.g. RMLMapper stores the output when the
knowledge graph is created completely. Finally, the RDFizers usually can have
a flag for removing duplicates; this operation has to be specified in the setup
because it strikes out the completeness and also the total execution time. The
efficiency of the RDFizers components that eliminate duplicates, can be captured
by observing the variables of this dimension.

Table 7. Datasets. Properties of datasets used in the empirical evaluations.

Dataset #rows #columns #tables

1K 1,000 2 2

10K 10,000 2 2

50K 50,000 2 2

As can be observed in the results reported in this section, the behaviour of
the studied engines is not equally affected by the different independent variables.
Thus, benchmarks need to include all these variables in order to provide a holistic
overview of the performance of the studied engines, and ensure general and
reproducible evaluations.

4 Experimental Evaluation

The goal of our experiment is to assess the impact of the discussed variables
and configurations during the evaluation of existing knowledge graph creation
tools. We aim at answering the following research questions: (RQ1) What is the
effect of mixing different variables in one testbed? (RQ2) What is the impact
of considering configurations of different complexity of the same variable in one
testbed? (RQ3) Do the different variables and configurations influence in the
behaviour of existing knowledge graph creation tools? To answer these research
questions, we set up the following experimental studies:

Datasets. For this evaluation, we generated three different datasets with 1,000
(1K), 10,000 (10K), and 50,000 (50K) rows, and various number of columns based
on the tested parameters; Table 7 shows the properties of the datasets generated
for Relation Type, Join Duplicates, and Join Selectivity evaluations. For
the Dataset Size (Näive) parameter, we generated the same number of rows as
in Table 7, but with 30 columns. During the experiments, we only considered
the CSV file format to represent the generated tables.

Configurations. We consider different configurations for the above-discussed
variables in each dimension. Dataset Size Configurations: (1) SDM-
RDFizer 1K; (2) SDM-RDFizer 10K; (3) SDM-RDFizer 50K; (4) RMLMapper
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Fig. 2. Comparison of Knowledge Graph Creation Tool on Different Dataset
Sizes (Näıve). The first three configurations, i.e. 1, 2, and 3 in x-axis and y-axis,
correspond to SDM-RDFizer on datasets 1K, 10K, and 50K, respectively. The last
three configurations, i.e. 4, 5, and 6 on x-axis and y-axis, correspond to RMLMapper
1K, 10K, and 50K, respectively. Grey bubbles correspond to correlation value of 1.0;
blue bubbles show a positive correlation. The number of blue bubbles suggests that
both systems exhibit similar behaviour. (Color figure online)

1K; (5) RMLMapper 10K; and (6) RMLMapper 50K. In each configuration of
this parameter, we only use one data file. Relation Type configurations:
(1) SDM-RDFizer 1-N; (2) SDM-RDFizer N−1; (3) SDM-RDFizer N−M; (4)
SDM-RDFizer Combinations (all relation types); (5) RMLMapper 1−N; (6)
RMLMapper N−1; (7) RMLMapper N−M; and (8) RMLMapper Combinations
(all relation types). For relation cardinality, we evaluated N = {1, 5, 10, 15}
and M = {1, 3, 5, 10}. In addition, we set the percentage of rows that involve
in those relation types to 25%, i.e. 25% of the overall rows from outer
table have a matching join value to inner table, and 50%, respectively. Join
Duplicate configurations: (1) SDM-RDFizer Low, (2) SDM-RDFizer High,
(3) RMLMapper Low, (4) RMLMapper High. Low Join Duplicates refer to
datasets with low percentage of duplicates, i.e. from 5% to 20% of data gen-
erated could have duplicates due to the join conditions, similarly High Join
Duplicates refer to higher percentage of duplicates, i.e. from 30% to 50% of
data generated could be duplicated. Join Selectivity Configurations: (1)
SDM-RDFizer High; (2) SDM-RDFizer Low; (3) RMLMapper High; and (4)
RMLMapper Low. In this case, the join selectivity High represents how many
time the join condition matches the values in the inner join file from 5% to 20%
of the overall rows, while Low means that the join condition matches range from
60% to 100% of the overall number of rows. As previously shown, we hypothesise
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that these configurations allow us to uncover patterns in the behaviour of these
engines that could not be observed if only näıve variables were studied.

Metrics. We report on the following metrics or observed variables: (a) Execution
Time: Elapsed time between execution of RDFizer and the delivery of the results.
(b) Number of Results: Number of triples generated by the RDFizer.

Implementations. The SDM-RDFizer and the testbeds are implemented in
Python 3.6; the SDM-RDFizer is publicly available5. Furthermore, Jupiter Note-
books are available to generate the data and plot the results. Additionally, we
have created a Docker image to run the testbeds and reproduce the experimen-
tal results6. The experiments were run in an Intel(R) Xeon(R) equipped with a
CPU E5-2603 v3 @ 1.60GHz 20 cores, 100G memory with Ubuntu 16.04LTS.

Testbeds. Results of each configurations are ordered from lower to higher com-
plexity and compared using the Pearson’s correlation. A high positive value of
correlation between two configurations indicates that the corresponding RDFiz-
ers had a similar behavior, i.e. the trends of execution time of the tools are
similar; they are represented with blue bubbles in our plots. When a configu-
ration is compared to itself, the Pearson’s correlation reaches the highest value
(1.0), represented with grey bubbles in our plots. On the other hand, a negative
value indicates that there is an inverse correlation between the RDFizers, i.e.
they exhibit an opposite behaviour; they are represented with red bubbles.

Discussion of the Observed Results

We observe that the behaviour of the engines can be affected when multiple
variables are involved in a testbed (e.g. size and relation type) or when different
levels of complexity of a variables (e.g. low, high join selectivity). We discuss
the obtained results during our evaluation over the different configurations and
parameters involved in each experiment:

Dataset Size (Näıve): Figure 2 depicts the comparison of RDFizers when the
dataset size is considered. When configuration 1 is compared to itself, the
Pearson’s correlation value is 1.0; additionally, it is high and positive when it is
compared to configurations 2, 3, 5, and 6 (large blue bubbles). Using this
parameter, the correlation analysis suggests that both RDFizers behave similarly
in all configurations. Moreover, this indicates that only considering the data size
is not enough to uncovered the properties of the studied engines.

Relation Types: Figure 3 reports on the correlation of different configurations
for various join relation types. We can observe in Figs. 3a, b, and c several red
bubbles, indicating a negative correlation in the behaviour of the compared con-
figurations and RDFizers. Contrary, Fig. 3d does not depict any red bubble, sug-
gesting thus, that the two RDFizers in all the configurations exhibit the same

5 https://github.com/SDM-TIB/SDM-RDFizer.
6 https://github.com/SDM-TIB/KGC-Param-Eval.

https://github.com/SDM-TIB/SDM-RDFizer
https://github.com/SDM-TIB/KGC-Param-Eval
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(a) Dataset 1K (b) Dataset 10K

(c) Dataset 50K (d) Combination of 1K, 10K, and 50K

Fig. 3. Comparison of Knowledge Graph Creation Tools on Different Types
of Relations. The first four (4) configurations, i.e. 1–4 in both x-axis and y-axis,
represent results of SDM-RDFizer on 1−N, N−1, N−M, and combination of all rela-
tions types, respectively. The later configurations, 5–8 both in x-axis and y-axis, shows
results of RMLMapper on 1−N, N−1, N−M, and combination of all relations types,
respectively. Grey bubbles correspond to correlation value of 1.0; blue bubbles show
a positive correlation while red bubbles show a negative correlation. The plots reveal
that both type of relations and size of the dataset need to be taken into account to
uncover patterns in the behaviour of the engines. (Color figure online)

behaviour. These results clearly illustrate the need of considering different con-
figurations and parameters in order to avoid drawing wrong conclusions about
the main characteristics of existing tools.

Join Duplicates: Figure 4 depicts the correlation between different configura-
tions when different setting of duplicates are produced during the execution of
joins between triple maps. As can be observed, Figs. 4a, and c include several red
bubbles that indicate an opposite behaviour of the RDFizers. Contrary, Figs. 4b,
and d suggest that both engines behave similarly.

Join Selectivity: Figure 5 shows the correlation between different configu-
rations for the selectivity of join conditions. Similarly, these testbeds reveal
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(a) Dataset 1K (b) Dataset 10K

(c) Dataset 50K (d) Combination of 1K, 10K, and 50K

Fig. 4. Comparison of Knowledge Graph Creation Tools on Duplicates dur-
ing Join. The first two (2) configurations, i.e., 1–2 on x-axis and y-axis, represent
results of SDM-RDFizer on datasets with low (5%–20% of data) number of duplicates
and high (30%–50% of data) number of duplicates generated during joins, respec-
tively. The last two configurations, i.e., 3–4 on x-axis and y-axis, represent results of
RMLMapper on datasets with low number of duplicates and high number of duplicates
generated during joins, respectively. Grey bubbles correspond to correlation value of
1.0; blue bubbles show a positive correlation while red bubbles show a negative cor-
relation. Results evidence that both join duplicates and dataset size are needed for
characterising an engine performance. (Color figure online)

contradicting patterns in the behaviours of the studied RDFizers. On the one
hand, Figs. 5a, b, and c are composed of several red bubbles and indicate that
these engines perform differently whenever the selectivity of the join condition is
changed. Surprisingly, when the size of these datasets are also taken into account
in the testbed (Fig. 5d), these patterns are hidden, and the results of the evalu-
ation suggest that both RDFizers perform similarly whenever the selectivity of
the join condition is changed.

The results reported in this experimental study provide clear evidence of the
importance of the variables and configurations that composed the methodology
devised in this work. Actually, in the four studied cases, they reveal important
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(a) Dataset 1K (b) Dataset 10K

(c) Dataset 50K (d) Combination of 1K, 10K, and 50K

Fig. 5. Comparison of Knowledge Graph Tools on Join Selectivity. The first
two configurations, i.e., 1–2 on x- and y-axis represent SDM-RDFizer on joins with
high selectivity (5%–20% of data) and joins with low selectivity (60%–100% of data),
respectively. Configurations 3 and 4 represent RMLMapper on joins with high selectiv-
ity (5%–20% of data) and joins with low selectivity (60%–100% of data), respectively.
Grey bubbles correspond to correlation value of 1.0; blue bubbles show a positive cor-
relation while red bubbles show a negative correlation. Dataset size and join selectivity
affect both engines differently. (Color figure online)

patterns that could not be observed whenever other parameters were studied
simultaneously. Based on these observations, we can conclude that these variables
and configurations should be included in the benchmarks in order to ensure that
the characteristics of knowledge graph creation engines are uncovered. Thus,
these observations allow us to answer our three research questions: RQ1, RQ2,
and RQ3. We encourage developers and users of knowledge graph creation tools
to bear in mind them during benchmarking in order to draw clear conclusions
about the performance of their tools.
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5 Related Work

R2RML [2] is a W3C recommendation for describing mapping rules to generate
knowledge graphs from relational databases. Currently, diverse approaches focus
on providing query-translation techniques (SPARQL-to-SQL) and optimisations
over the resulted queries like morph-RDB [14] or Ultrawrap [17]. Additionally,
other tools focus on generating RDF graphs are supported by R2RML (e.g.
DB2Triples7 and R2RMLParser8), while other approaches extend R2RML (e.g
xR2RML [12], RMLC-Iterator [1], and RML [3]). Particularly, RML is defined
as an extension of R2RML to provide support for other formats like JSON, XML
or CSV. YARRRML [8] is other serialization of RML using the YAML format; it
improves the creation and maintainability of the mapping rules. There are multi-
ples tools that support the RML specification. For example, CARML9 executes
RML rules and includes additional features like MultiTermMap (to deal with
arrays) and XML namespace (to improve XPath expressions). GeoTriples [10] is
focused on the generation of RDF from geospatial data while RocketRML10 is
an RML engine implemented using the NodeJS framework. Similar to RMLMap-
per and SDM-RDFizer, all these engines are able to check compliance with the
RML specification using a set of defined test-cases [7]11. They results of the exe-
cution of the test-cases is included in the implementation report12. Despite the
great effort conducted by the Semantic Web community, because of the lack of
testbeds, reproducible empirical studies have not been conducted so far. In this
paper, we conduct an evaluation involving a set of variables and configurations
that will allow the community to define testbeds of different complexity, enabling
thus, the understanding of the main strengths and limitations of the state of the
art. Furthermore, the analysis of these variables and configurations will enable
developers to better understand main features of their tools.

The Semantic Web community has also actively worked on the definition
of several testbeds. As an example of the existing contributions, we can men-
tion the work done in the area of federated query processing. Specifically in
this area, FedBench [15] is an exemplar benchmark; it comprises three datasets,
(i.e. cross-domain, life science and SP2Bench), 25 queries, and two proposed
metrics to measure a federated engine performance, (i.e. total execution time
and number of requests to SPARQL endpoints). LSLOD is another bench-
mark [6] that consists of 20 queries –classified as simple and complex; it com-
prises ten real-world datasets from the Life Sciences domain. LSLOD proposes
to measure the performance in terms of total triple pattern-wise sources selected
(TTPWSS), the number of SPARQL queries ASK, the source selection time,
the overall query execution time, and the result set completeness. Finally,
Montoya et al. [13] identify a main drawback in existing benchmarks for SPARQL
7 https://github.com/antidot/db2triples.
8 https://github.com/nkons/r2rml-parser.
9 https://github.com/carml/carml.

10 https://github.com/semantifyit/RML-mapper.
11 http://rml.io/test-cases/.
12 http://rml.io/implementation-report/.

https://github.com/antidot/db2triples
https://github.com/nkons/r2rml-parser
https://github.com/carml/carml
https://github.com/semantifyit/RML-mapper
http://rml.io/test-cases/
http://rml.io/implementation-report/
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federated queries; particularly, Montoya et al. focus on the study of FedBench
and illustrate how the lack of considering independent variables impact on the
effectiveness of the benchmark, e.g. complexity of the queries, data used, plat-
forms involved, and endpoints. They show the relevance of these variables in
order to ensure reproducibility of the results observed during an empirical eval-
uation. In this paper, we build on the work conducted by Montoya et al. and
present a similar evaluation composed of diverse variables and configurations
that strike out the performance of the tools for knowledge graph creation. Our
ambition is that the results of this work will facilitate the definition of suitable
testbeds able to ensure reproducible experimental studies that evaluate solutions
to the problem of knowledge graph creation.

6 Conclusions and Future Work

In this paper, we performed an in-depth analysis of the variables and config-
urations that impact on the behaviour of two RDFizers. The observation that
existing RDFizers exhibit heterogeneous behaviours whenever small changes in
the testbeds are conducted, motivated the need of conducting this study involv-
ing a set of parameters that can reveal patterns in the behaviour of the studied
engines. Additionally, the lack of testbeds encouraged us to acquit the definition
of variables and configurations that enable for the characterisation of the pit-
falls of existing RDFizers and for identifying the list of challenges and research
directions in the state of the art. With the proposed analysis and the results of
the experimental study, we contribute with an empirical configuration that can
be reused for the evaluation of other knowledge graph creation tools and map-
ping languages (e.g. SPARQL-Generate, TARQL, or R2RML). Furthermore, our
set of variables and configurations can be utilised as a guideline during testing
and benchmarking. One of the main lessons learned during the definition and
evaluation of our approach, is that none of the evaluated RDFizers behaves con-
sistently whenever the complexity of the testbeds increases. Our ambition is
that the reported results inspire the community to define general testbeds that
facilitate the understanding of the state of the art and the development of novel
tools for the creation of knowledge graphs at large scale. In the future, we plan
to define testbeds and conduct a more detailed analysis of other RDFizers and
mapping languages. Moreover, we envision to motivate the community to con-
duct a joint effort in the definition of benchmarks that enable for fair evaluations
of knowledge graph creation tools with replicable and generalizable results.
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