
GraphQL Servers generation from R2RML
mappings with morph-GraphQL (DEMO)
1st Ahmad Alobaid

Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
aalobaid@fi.upm.es

2nd Freddy Priyatna
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
fpriyatna@fi.upm.es

3rd David Chaves-Fraga
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
dchaves@fi.upm.es

4th Oscar Corcho
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
ocorcho@fi.upm.es

Abstract—The adoption of GraphQL is on the rise, many
companies and institutes are adopting it due to its ease of
use, ease of maintenance, and hide the complexity from the
user. Such advantages come from using a unified global schema
and mapping it to the underlying data sources. The semantic
web community has already adopted a similar way to map
different data resources (e.g., R2RML). We present a novel way
of generating GraphQL server from R2RML mappings.

Index Terms—GraphQL, R2RML, Wrapper, Adapter

I. INTRODUCTION

Facebook developed GraphQL1 as an alternative to REST
and made it open source to be used by the public in 2015.
A GraphQL server consists of multiple components: schema,
resolvers, and data sources. The GraphQL schema is the
exposed view - an interface that the user (the person who
writes queries) can use to access the underlying data sources.
GraphQL resolvers are written codes (in a programming
language) to link fields in the data sources to the exposed
schema. The data sources are the where the data are stored
and can be retrieved from such as a Relation Database (e.g.,
MySQL).

R2RML [1], published in 2012 by the RDB2RDF W3C
Working Group, is a W3C recommendations for transforming
the content of relational databases into RDF datasets. It allows
the users to specify rules of how this transformation being
done, such as how the URIs be generated, or which columns
to be used in the transformation rules.

II. MORPH-GRAPHQL

In [2] we introduce morph-GraphQL2, that takes as its input
R2RML mappings and generates the corresponding GraphQL
server. GraphQL engine interprets queries written in GraphQL
and use the corresponding resolvers to fetch the data from
the data sources. This workflow is shown in Fig. 1. R2RML

1https://graphql.org/
2https://github.com/oeg-upm/morph-graphql, deployed at http://graphql.

morph.oeg-upm.net

will be the input to morph-GraphQL and it will output the
corresponding GraphQL resolvers and schema. The schema,
resolvers and the data source are the input to the GraphQL
engine.

Fig. 1. Workflow of morph-GraphQL

In this demo we will show how we create R2RML mappings
for the CSV files3 containing Star Wars data that is used as the
example in the reference implementation4. Then we will use
morph-GraphQL to generate GraphQL schema and resolvers
from created mappings. Finally, we will evaluate some queries
corresponding to the Star Wars example.

Acknowledgement: This work is supported by the Spanish
Ministerio de Economı́a, Industria y Competitividad and EU
FEDER funds under the DATOS 4.0: RETOS Y SOLU-
CIONES - UPM Spanish national project (TIN2016-78011-
C4-4-R)

REFERENCES

[1] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF Mapping
Language,” https://www.w3.org/TR/r2rml/, accessed: 2018-12-07.

[2] F. Priyatna, D. Chaves-Fraga, A. Alobaid, and O. Corcho, “morph-
GraphQL: GraphQL resolvers generation from R2RML mappings.” in
SEKE, 2019.

3https://github.com/oeg-upm/morph-graphql/tree/master/examples/starwars
4https://github.com/graphql/graphql-js

https://graphql.org/
https://github.com/oeg-upm/morph-graphql
http://graphql.morph.oeg-upm.net
http://graphql.morph.oeg-upm.net
https://www.w3.org/TR/r2rml/
https://github.com/oeg-upm/morph-graphql/tree/master/examples/starwars
https://github.com/graphql/graphql-js

	Introduction
	morph-GraphQL
	References

