
Mapeathor: Simplifying the Specification
of Declarative Rules for Knowledge

Graph Construction

Ana Iglesias-Molina, Luis Pozo-Gilo, Daniel Doña, Edna Ruckhaus,
David Chaves-Fraga, and Oscar Corcho

Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
{ana.iglesiasm,luis.pozo}@upm.es, ddona@delicias.dia.fi.upm.es,

{eruckhaus,dchaves,ocorcho}@fi.upm.es

Abstract. In recent years we have observed an increasing interest by
the scientific community, from social sciences to biomedicine, in the gen-
eration and publication of RDF-based knowledge graphs. One possibility
for creating knowledge graphs consists in using declarative mappings to-
gether with their associated parsers. These mappings describe the rela-
tionship between the source data and a reference ontology. However, the
learning curve to create these mapping files is steep, hindering its use by
a wider community. In this paper we present a user-friendly mapping-
language-independent tool, Mapeathor, to declare transformation rules
based on spreadsheets and translate them into two different mapping
languages with the purpose of easing the mappings creation process.

Keywords: Knowledge Graph · Declarative mapping · Spreadsheet

1 Introduction

In the last few decades, we have seen a significant increase in the publication
of data in a machine understandable manner following Linked Data principles1

(e.g., DBpedia2, Wikidata3). Knowledge Graph construction requires integrating
different data sources in a structured way, usually following the schema of an
ontology or group of ontologies. This facilitates the posterior task of mining the
knowledge graph with several applications, such as searching recommendations
and learning implicit data patterns.

Knowledge graphs can be built in diverse ways. One option is creating ad-hoc
scripts to transform data, which requires the user to repeat the process of script

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1 https://5stardata.info/en/
2 https://wiki.dbpedia.org/
3 https://www.wikidata.org/

A. Iglesias-Molina et al.

writing in every specific use case. Another option is using tools like OpenRe-
fine4 to perform data transformation through the creation of an RDF skeleton,
which includes proprietary transformation rules and a functionality for knowl-
edge graph construction. Lastly, there is an option to keep the transformation
rules in specific files that can be later processed by engines that either transform
the data to RDF or create a virtual knowledge graph that can be queried with-
out transforming the source data. These rules can be written in a wide variety of
languages (e.g., R2RML [2], RML [3]) that cover different user’s needs (e.g., the
source data format or the engine that will be used). Although the use of these
mapping files is more flexible and independent, since they can be processed by
a wide variety of engines, their creation is still not easy for new users. Experts
are usually needed to carry out these tasks, hindering the use of semantic web
technologies across the scientific community. That is why it is necessary to lower
the learning curve and improve mapping reuse and reproducibility.

Since mapping languages started to be used by the community, there have
been multiple approaches for the development of editors to ease their specifica-
tion. Most of them enable editing through graphical visualization [4, 6], others
provide a writing environment (e.g. the Protégé extension OntopPro). These
editors are language-oriented, they help to create one kind of mapping, not tak-
ing into account the wide variety of mapping languages that currently exist.
Moreover, when managing a considerable amount of mapping rules, a graphical
approach may not be easily handled.

Our work focuses on providing a straightforward way to create these map-
pings, specifying the transformation rules in spreadsheets, so they are later trans-
lated into one of the implemented mapping languages. The purpose of this pro-
posal is to increase the interoperability between these languages [1] as well as
to ease the creation process. To perform the mapping rules translation we de-
veloped Mapeathor5, a tool able to parse the spreadsheets and generate the
corresponding mappings in two different languages. This work is an extension
and improvement on the work previously presented in [5], where the first ver-
sion of the spreadsheet design and the tool were presented. The spreadsheet
includes now more options to maintain the language’s expressiveness, and the
implementation has become simpler to use and more accurate in the translation.

This paper is structured as follows: Section 2 describes the design of the
spreadsheet. Section 3 explains the functionalities of the tool and a real-world
use case. Finally, section 4 presents the main conclusions and future work.

2 Spreadsheet design

The rules required to generate a knowledge graph can be specified in multiple
languages. The language is chosen by the user depending on the specific use case.
However, the rules themselves are equivalent across languages, so they can be
written in a language-independent way, in this case, we chose a spreadsheet for

4 http://openrefine.org/
5 https://morph.oeg.fi.upm.es/demo/mapeathor

Mapeathor: Simplifying Declarative Rules Specification for KGC

3

(a) Prefix sheet
Prefix URI

noise
http://v.ciudadesabiertas.es/

cont-acustica#
noise-

res
http://v.ciudadesabiertas.es/res/

cont-acustica#
sosa http://www.w3.org/ns/sosa/

(b) Subject sheet

ID Class URI

Station noise:EstacionMedida
noise-res:estacion-

medida/{id}

Observation noise:Observacion
noise-res:observa

cion/{idx}

(c) Source sheet

ID Feature Value

Station query
SELECT id, name

FROM Station

Observation source data/station.json

Observation format JSON

Observation iterator $

(e) Function sheet

FunctionID Feature Value

<Fun1> fno:executes grel:replace

<Fun1> ex:param1 {obsProperty}

<Fun1> ex:param2 “ ”

<Fun1> ex:param3 “-”

(d) Predicate_Object sheet

ID Predicate Object DataType ReferenceID InnerRef OuterRef

Station dcterms:identifier {id} string

Station schema:name {name} string

Station
geosparql:has

Geometry
noise-res:
punto/{id}

iri

Observation sosa:resultTime {resTime} Time

Observation sosa:madeBySensor Station {madeBySensor} {id}

Observation sosa:observedProperty <Fun1>

Fig. 1: Example of a spreadsheet representing the (a) Prefix sheet, (b) Subject
sheet, (c) Source sheet, (d) Predicate Object sheet and (e) Function sheet.

rule specification. The spreadsheet template is devised to contain the rules in a
compact and understandable way, in a format widely used by the scientific com-
munity. The design is aimed to be language-independent and to ease the writing
process so the user does not have to learn a mapping language. In addition,
the functionalities of a spreadsheet editor can be used to speed up the writing
process. Reusing mappings for similar use cases is also easier in this specification
format. The spreadsheet contains the mapping essential elements structured in
five different sheets: Prefix, Source, Subject, Predicate Object and Function.

Prefix sheet: This sheet contains the namespaces and corresponding pre-
fixes used when declaring the transformation rules (Figure 1a). It is composed
of two columns: Prefix for the prefix and URI for the corresponding namespace.

Subject sheet: This sheet defines the subjects to be generated and the key
ID that links the information in the sheets (Figure 1b). It is organized in three
columns: ID, Class and URI. URI defines the template URI for the subject, its
class is specified in Class. ID contains a unique identifier for each subject’s set
of rules in order to relate to information on these rules in the remaining sheets.

Source sheet: Here we specify where the data is retrieved from (Figure
1c). The information is organized in three columns: ID, Feature and Value.
Feature declares the type of information provided in Value. In Value it can
be specified the path to the source data (with the feature source), the format
(format), the iterator (iterator, loop used to map the data from JSON and XML
files), database table (table), SQL query (query) and SQL version (SQLVersion).
Any language option may be included. Finally, ID indicates the rule it refers to.

Predicate Object sheet: This sheet defines the triples through the pred-
icates and its correspondent objects (Figure 1d). The columns Predicate and
Object specify the predicate and object in a rule. The XSD datatype of Object

A. Iglesias-Molina et al.

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix ql: <http://semweb.mmlab.be/ns/ql#>.
@prefix noise: <http://v.ciudadesabiertas.es/cont-acustica#>.
@prefix noise-res: <http://v.ciudadesabiertas.es/res/cont-acustica#>.
@prefix sosa: <http://www.w3.org/ns/sosa/>.

<#Station>
 rr:logicalSource [
 rr:sqlQuery """SELECT id, name FROM Station""";
 rr:sqlVersion rr:SQL2008
];
 rr:subjectMap [
 rr:template "noise-res:estacion-medida/{id}";
 rr:class noise:EstacionMedida;
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant dcterms:identifier];
 rr:objectMap [rml:reference "id"; rr:datatype xsd:string]
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant schema:name];
 rr:objectMap [rml:reference "name"; rr:datatype xsd:string]
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant geosparql:hasGeometry];
 rr:objectMap [rr:template "noise-res:punto/{id}"; rr:termType rr:IRI]
];.

[Prefixes]
<#Observation>
 rml:logicalSource [
 rml:source "data/station.json";
 rml:referenceFormulation ql:JSONPath;
 rml:iterator "$";
];
 rr:subjectMap [
 a rr:Subject;
 rr:termType rr:IRI;
 rr:template "noise-res:observacion/{idx}";
 rr:class noise:Observacion;
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant sosa:resultTime];
 rr:objectMap [rml:reference "resTime"; rr:datatype xsd:Time]
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant sosa:madeBySensor];
 rr:objectMap [
 rr:parentTriplesMap <#Station>;
 rr:joinCondition [rr:child " madeBySensor"; rr:parent "id";];
];
];
 rr:predicateObjectMap [
 rr:predicateMap [rr:constant sosa:observedProperty] ;
 rr:objectMap <#Fun1>
];.

[Prefixes]
<#Fun1>
 a rr:TriplesMap;
 a fnml:FunctionTermMap;
 fnml:functionValue [
 rml:logicalSource [
 rml:source "data/station.json";
 rml:referenceFormulation ql:JSONPath
];
 rr:predicateObjectMap [
 rr:predicate fno:executes ;
 rr:objectMap [rr:constant grel:replace]
];
 rr:predicateObjectMap [
 rr:predicate ex:param1 ;
 rr:objectMap [rml:reference "obsProperty"]
];
 rr:predicateObjectMap [
 rr:predicate ex:param2 ;
 rr:objectMap [rr:constant " "]
];
 rr:predicateObjectMap [
 rr:predicate ex:param3 ;
 rr:objectMap [rr:constant "-"]
];
].

(a) Triple map for Station (c) Triple map for Fun1(b) Triple map for Observation

Fig. 2: Output RML mapping file resulting from the translation of the rules
shown in Figure 1. The following sets of rules are shown: (a) Station, (b) Obser-
vation and the function (c) Fun1.

is defined in DataType. When the object refers to a subject defined in another
rule, the rule is written differently. There are three fields that allow the specifica-
tion of the linking condition between the object of the triple and the referenced
subject. They specify which is the ID of the target subject (ReferenceID), and
the ”join” fields in the source data (InnerRef for the field of the object of the
current triple, and OuterRef for the field of the referred subject). Lastly, the
column ID indicates the rule it belongs to.

Function sheet: Some languages are able to process transformation func-
tions over the data (e.g. FnO+RML), which can be detailed in this sheet (Figure
1e). Some well known options are the SQL and GREL functions, but any option
can be used. The functions are referred in the Predicate Object sheet or in other
function rows with the identifier specified in FunctionID. The column Feature

is used to specify the type of information provided in Value, where the name of
the function and the value of the parameters are written.

3 Demonstration

The spreadsheet containing the transformation rules is processed by the tool
Mapeathor to create a mapping file. For example, Figure 2 depicts the mapping
file written in the RML language that results when translating the rules in
Figure 1. Currently, this tool translates Google spreadsheets and XLSX files to
the following languages: the W3C recommendation R2RML [2], RML [3], and
its serialization, YARRRML6. It can be used as a web service7 and as a CLI8.

6 https://rml.io/yarrrml/
7 https://morph.oeg.fi.upm.es/tool/mapeathor/swagger/
8 https://github.com/oeg-upm/Mapeathor

Mapeathor: Simplifying Declarative Rules Specification for KGC

Currently, Mapeathor is being used to generate mappings for city open data
publication related to traffic, public bus transport, budget and noise pollution
in the context of the Ciudades Abiertas project. Six spreadsheets have been
completed, containing 31 subjects and 104 predicate-objects rules. The process
of spreadsheet completion and mapping creation for the languages implemented
will be shown in the demo with data from this real-world use case.

4 Conclusions and future work

This paper presents Mapeathor, a tool able to translate transformation rules
specified in spreadsheets to three different mapping languages. The key part
of the work are the spreadsheets containing the mapping rules, since they are
designed to facilitate the specification process for the user. Currently, the tool
is being tested in several use cases from the Ciudades Abiertas project.

The purpose of this work is to create a framework to declare in a user-friendly
manner the transformation rules in a language-independent way and to be able
to generate these rules in any mapping language. Future work includes a user
study to test the usefulness of this tool and find guidelines for improvement,
extend the tool to cover more languages, and implement changes that make rule
specification more user-friendly.

Acknowledgements. The work presented in this paper is supported by the
Spanish Ministerio de Economı́a, Industria y Competitividad and EU FEDER
funds under the DATOS 4.0: RETOS Y SOLUCIONES - UPM Spanish national
project (TIN2016-78011-C4-4-R).

References

1. Corcho, O., Priyatna, F., Chaves-Fraga, D.: Towards a New Generation of Ontology
Based Data Access. Semantic Web 11, 153–160 (2020)

2. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language,
W3C Recommendation 27 September 2012, https://www.w3.org/TR/r2rml/

3. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous
data. In: Ldow (2014)

4. Heyvaert, P., Dimou, A., Herregodts, A.L., Verborgh, R., Schuurman, D., Mannens,
E., Van de Walle, R.: Rmleditor: a graph-based mapping editor for linked data
mappings. In: European Semantic Web Conference. pp. 709–723. Springer (2016)

5. Iglesias-Molina, A., Chaves-Fraga, D., Priyatna, F., Corcho, O.: Towards the defini-
tion of a language-independent mapping template for knowledge graph creation. In:
Proceedings of the Third International Workshop on Capturing Scientific Knowl-
edge. pp. 33–36 (2019)

6. Sicilia, Á., Nemirovski, G., Nolle, A.: Map-On: A web-based editor for visual ontol-
ogy mapping. Semantic Web 8(6), 969–980 (2017)

