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Abstract. This paper reports on the refinement of the algorithm for measuring 
terminological difference between text datasets (THD). This baseline THD algo-
rithm, developed in the OntoElect project, used exact string matches for term 
comparison. In this work, it has been refined by the use of appropriately selected 
string similarity measures (SSM) for grouping the terms, which look similar as 
text strings and presumably have similar meanings. To determine rational term 
similarity thresholds for several chosen SSMs, the measures have been imple-
mented as software functions and evaluated on the developed test set of term 
pairs in English. Further, the refined algorithm implementation has been evalu-
ated against the baseline THD algorithm. For this evaluation, the bags of terms 
have been used that had been extracted from the three different document collec-
tions of scientific papers, belonging to different subject domains. The experiment 
revealed that the use of the refined THD algorithm, compared to the baseline, 
resulted in quicker terminological saturation on more compact sets of source doc-
uments, though at an expense of a noticeably higher computation time. 

Keywords: Automated Term Extraction, OntoElect, Terminological Difference, 
String Similarity Measure, Bag of Terms, Terminological Saturation. 

1 Introduction 

The research presented in this paper1 is the part of the development of the methodolog-
ical and instrumental components for extracting representative (complete) sets of sig-
nificant terms from the representative sub-collections of textual documents having min-
imal possible size. These terms are further interpreted as the required features for engi-
neering an ontology in a particular domain of interest. Therefore, it is assumed that the 

                                                           
1 This paper is a refined and extended version of [1]. 
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documents in a collection cover a single and well-circumscribed domain. The main 
hypothesis, put forward in this work, is that a sub-collection can be regarded as repre-
sentative to describe the domain, if it is the terminological core. It means that any ad-
ditions of extra documents from the entire collection to this sub-collection do not no-
ticeably change the terminological footprint on the domain. Such a sub-collection is 
further considered as complete. Therefore, a representative bag of significant terms de-
scribing its domain can be extracted from it. The approach to assess the representative-
ness does so by evaluating terminological saturation in a document (sub-)collection [2], 
[3]. Practically, the approach allows extracting statistically the same set of significant 
terms from a part of a collection, instead of processing the whole collection. Automated 
term extraction is known to be a computationally bulky process. Therefore, lowering 
the number and the overall volume of the input documents might substantially decrease 
processing times and improve scalability. For example, the terminological core of the 
TIME collection of 437 conference papers (Section 5.2), detected using the baseline 
THD algorithm, contains 220 papers (50.34 percent of the total number). We demon-
strate in the paper that using the proposed THD refinement, the size of a terminological 
core is additionally lowered by 22 to 46 percent without any loss in quality. 

Detecting saturation is done by measuring terminological difference (thd) among the 
pairs of the consecutive incrementally enlarged datasets, as described in Section 5. This 
measure is based on evaluating differences between individual terms.  
A (baseline) THD algorithm for computing thd [2] has been developed and imple-
mented in the OntoElect project2. OntoElect develops a methodology and instrumental 
tool suite for refining domain ontologies. It exploits the allusion of public elections to 
find out what is the prevailing sentiment of the domain knowledge stakeholders. The 
sentiments are elicited indirectly, through terms extraction from a saturated document 
collection, describing the domain. Term significance scores are interpreted as the votes 
in favour of the corresponding ontology features. The features satisfying a simple ma-
jority of voters are represented by the terms, ordered by descending scores, with the 
minimal sum of the scores being higher than 1/2 of the total sum.  

The baseline THD algorithm uses a simple string equivalence check for detecting 
similar (the same) individual terms. The objective of the research presented in this paper 
is to find out if it is possible to achieve better performance in measuring terminological 
difference by using a proper string similarity measure to compare individual terms.  

The remainder of the paper is structured as follows. Section 2 reviews the related 
work and outlines our contributions. Section 3 presents the chosen string similarity 
measures and reports about the choice of the proper terms similarity thresholds for 
terms grouping. Section 4 sketches out the approach of OntoElect for measuring thd 
and presents our refinement of the baseline THD algorithm. Section 5 reports the set-
up and results of our evaluation experiments. Our conclusions are given and plans for 
the future work outlined in Section 6.  

                                                           
2 https://www.researchgate.net/project/OntoElect-a-Methodology-for-Domain-Ontol-

ogy-Refinement   
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2 Related Work 

The work related to the presented research has been sought in: (i) automated term ex-
traction (ATE) from English texts; (ii) string similarity (distance) measurement in the 
pairs of text strings. 

2.1 Automated Term Extraction 

In the majority of approaches to ATE, e.g. [4] or [5], processing is done in two consec-
utive phases: linguistic processing and statistical processing. Linguistic processors, like 
POS taggers or phrase chunkers, filter out stop words and restrict candidate terms to  
n-gram sequences: nouns or noun phrases, adjective-noun and noun-preposition-noun 
combinations. Statistical processing is then applied to measure the ranks of the candi-
date terms. These measures are [6]: either the measures of unithood, which focus on the 
collocation strength of units that comprise a single term; or the measures of termhood, 
which point to the association strength of a term to domain concepts. 

For unithood, the measures are used such as mutual information [7], log likelihood 
[7], t-test [4, 5], modifiability and its variants [8, 5]. The measures for termhood are 
either term frequency-based (unsupervised approaches) or reference corpora-based 
(semi-supervised approaches). The most used frequency-based measures are TF/IDF 
(e.g. [9, 10]), weirdness [11], and domain pertinence [12]. More recently, hybrid ap-
proaches were proposed, that combine unithood and termhood measurements in a sin-
gle value. A representative measure is c/nc-value [13]. C/nc-value-based approaches to 
ATE have received their further evolution in many works, e.g. [4, 12, 14] to mention a 
few. 

Linguistic processing is organized and implemented in a very similar way in all ATE 
methods, except some of them that also include filtering out stop words. Stop words 
could be filtered out also at a cut-off step after statistical processing. Statistical pro-
cessing is sometimes further split in two consecutive sub-phases of term candidate scor-
ing, and ranking. For term candidates scoring, reflecting its likelihood of being a term, 
known methods could be distinguished by being based on measuring occurrences fre-
quencies, including word association (c.f. [9]) or assessing occurrences contexts, using 
reference corpora, e.g. Wikipedia [15], or topic modelling [16, 17].  

2.2 Text Similarity Measurement 

In the recent surveys on text similarity measurement approaches, e.g. [18, 19], methods 
(or measures)3 are grouped based on analysing: (i) characters and their sequences; (ii) 
tokens; (iii) terms; (iv) text corpora; or (v) synsets. In [19] hybrid measures that allow 
fuzzy matching between tokens are also mentioned. Brief characteristics of the groups 
are given immediately below. The individual methods belonging to the groups are de-
tailed in Table 1. 
                                                           
3 In this context, we do not distinguish a method and a measure. A method is understood 

as a way to implement the corresponding measure function.  



 

Character- and character sequence-based measures compare characters and their 
sequences in strings, taking into account also the order of characters. These include the 
measures of common character sequences, e.g. substrings; edit distance; the number 
and order of the common characters between two strings. 

Token-based methods model a string as a set of tokens. Individual characters, char-
acter n-grams, or separate words could be regarded as tokens. Quantification is done by 
computing the size of the overlap normalized by a measure of string length.  

Term-based measures are similar to token-based measures but the tokens are dif-
ferent. Those are not character n-grams but terms, which are word n-grams with possi-
bly varying n. Furthermore, the weights of the terms, e.g. their frequencies of occur-
rence, are taken into account. These measures apply more on long character strings, or 
documents, hence are better suited to measure document or text dataset similarity. 

Corpus-based and synset-based (or knowledge-based) methods are very margin-
ally relevant to our purposes in this paper. Corpus-based approaches determine the sim-
ilarity between words based on (statistical) information gained from large text corpora. 
Synset-based approaches rely on semantic networks, like WordNet [20], to derive se-
mantic similarity between words. Both approaches are therefore too bulky computa-
tionally, though may be applied to ATE – e.g. for deciding about cut-offs. Term group-
ing, the technique we report in this paper, is however performed after the terms have 
already been extracted. Hence, we omit looking at corpus- and synset-based measures.  

The overview of the most popular text / string similarity measures, grouped by 
method types, is provided in Table 1. This overview is by far not complete as many 
other variants of SSM are available in the literature. Those we omit are however based 
on the same principles compared to the listed in Table 1, to the best of our knowledge.  

Table 1: The overview of text similarity / distance measures 

Name, 
source Description Specifics 

Relevance 
Term  

Similarity thd 4 

Character- and character sequence-based measures 
Longest 
Common 
Substring 
[21] 

common character sequence 
based measure 

returns the integer 
length of the longest 
common substring; 
could be normalized 
by the total length 

moderate irrelevant 

Levenshtein 
distance [22] 

edit distance based measure returns an integer 
number of required ed-
its 

marginal irrelevant 

Hamming 
distance [23] 

edit distance based measure strings have to be of 
equal length 

marginal irrelevant 

Monger-
Elkan dis-
tance [24] 

edit distance based measure returns an integer 
number of required ed-
its 

marginal irrelevant 

                                                           
4 thd is the measure for terminological difference developed in OntoElect [2] and used 

in our approach – see also Section 4. Hence, “relevant” in this column means being 
appropriate for measuring terminological difference between documents of text da-
tasets.   



Name, 
source Description Specifics 

Relevance 
Term  

Similarity thd 4 
Jaro distance 
[25] 

counts the minimal number of 
one character transforms in one 
string for arriving at the other 
string 

returns a normalized 
real value from [0, 1] 

good irrelevant 

Jaro-Winkler 
distance [26] 

refines Jaro measure by using a 
prefix scale value – prioritizes 
the stings that match at the be-
ginning 

returns a normalized 
real value from [0, 1] 

good irrelevant 

Token-based measures 
Sørensen-
Dice coeffi-
cient [27, 28]  

Counts the ratio of identical 
character bi-grams to the over-
all number of bi-grams in both 
strings  

returns a normalized 
real value from  
[0, 1] 

good irrelevant 

Jaccard simi-
larity [29] 

counts the ratio between the 
cardinalities of the intersection 
and union of the character sets 
(uni-grams) in the strings 

returns a normalized 
real value from  
[0, 1] 

good irrelevant 

Cosine simi-
larity [19] 

Size of overlap in character 
uni-grams divided by the 
square root of the sum of the 
squared total numbers of uni-
grams in both strings 

returns a normalized 
positive real value  

marginal 
(computa-
tionally 
hard) 

irrelevant 

Term-based measures 
Euclidian dis-
tance [30] 

Measures traditional Euclidian 
distance in an n-dimensional 
metric space (of positive reals) 

works for documents; 
returns a real positive 
value 

irrelevant relevant 

Cosine simi-
larity [31] 

Computes a cosine between 
two vectors in the term space; 
vectors are specified by term 
weights (e.g. TF of C-value)  

works for documents; 
returns a normalized 
positive real value 

irrelevant marginal 

Pearson cor-
relation [30] 

Computes Pearson correlation 
for a pair of vectors in the term 
vector space 

works for documents; 
returns a normalized 
real value that ranges 
from +1 to −1; it is 1 
when vectors are fully 
identical 

irrelevant marginal 

Manhattan 
(block) dis-
tance [18] 

the distance to be traveled to 
get from one data point to the 
other if a grid-like path is fol-
lowed 

works for documents; 
resembles the thd 
measure [2] 

irrelevant relevant 

The authors of [32] present an expansion-based framework to measure string simi-
larities efficiently while considering synonyms. This result is also relevant to our work 
as a synonym is one of the categories of term candidates that may need to be considered 
for grouping in our settings. In [32], it is also acknowledged that there is  
a rich set of string similarity measures available in the literature, including character  
n-gram similarity [33], Levenshtein distance [22], Jaro-Winkler measure [26], Jaccard 
similarity [29], TF/IDF based cosine similarity [34], and Hidden Markov Model-based 
measure [35].  

2.3 Contributions 

In this work, we do not contribute any novel method for ATE. The c-value method [13] 
implemented in the UPM Term Extractor [36] is used as this combination of the method 



 

and implementation has been experimentally proven to be the best appropriate for de-
tecting terminological saturation [37].  

In difference and complementary to the abovementioned relevant work, we contrib-
ute several novel things. Firstly, we propose a way to rationally choose the thresholds 
that are used to regard string similarity as term similarity (Section 3). Secondly, we 
develop an algorithm for similar terms grouping that uses string similarity measures 
and term similarity thresholds (Section 4). Based on its use, we propose the refinement 
of the baseline THD algorithm [2] for measuring terminological difference between 
two subsequent text datasets (Section 4).  

3 The Choice of SSMs and Terms Similarity Thresholds 

From the variety of SSMs, mentioned above, due to the specifics of our task of the 
approximate comparison of short strings containing a few words, we filter out those:  
(i) that require long strings or sets of strings of a considerably big size; (ii) that are 
computationally hard. We also keep the representatives of all kinds of string metrics in 
our short list as much as possible. As a result, we form the following list of measures 
to be considered for further use:  

• Character-based measures: Levenshtein distance [22], Hamming distance [23], Jaro 
similarity [25], and Jaro-Winkler similarity [26] 

• Token-based measures: Jaccard similarity (uni-gram comparison) [29], cosine simi-
larity (uni-gram comparison) [19], and Sørensen-Dice coefficient (bi-gram compar-
ison) [27, 28] 

Among those, Levenshtein and Hamming distances appear to be the least appropriate 
in our context due to their specifics. Levenshtein returns an integer number of required 
edits, while the rest of the measures return normalized reals. Hence, it is not clear if 
normalizing Levenshtein would make the result comparable to the other measures in a 
way to use the same term similarity threshold. Hamming measure is applicable only to 
the strings of equal lengths. Adding spaces to the shorter string, however, may lower 
the precision of measurement. Cosine similarity is based on the same principle as Jac-
card, but is more computationally complex due to the presence of the square root in the 
denominator. Therefore, we finally choose to use Jaro, Jaro-Winkler, Jaccard5, and 
Sørensen-Dice for implementation and evaluation in our work. Further, it is briefly ex-
plained how the selected measures are computed.   

Jaro similarity simj between two strings S1 and S2 is computed (1) as the minimal 
number of one character transforms to be done to the first term (string) for getting the 
second string in the compared pair.   

                                                           
5 It is expected that Cosine measure, being based on the same principle as Jaccard, is 

not better than Jaccard in terms of performance, though takes more time to be com-
puted.   
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where: |S1|, |S2| are the lengths of the compared strings; m is the number of the matching 
characters; and t is the half of the number of transposed characters. The characters are 
matching if they are the same and their distance from the beginning of the string differs 
by no more than ⌊𝑚𝑚𝑚𝑚𝑚𝑚(|𝑆𝑆1|, |𝑆𝑆2|)/2⌋ − 1. The number of transposed characters is the 
number of matching but having different sequence order symbols.  

Jaro-Winkler similarity measure 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗−𝑤𝑤 refines Jaro similarity measure by using a 
prefix scale value p, which assigns better ratings to the strings that match from their 
beginnings for a prefix length l. Hence, for the two strings S1 and S2 it is computed as 
shown in (2).  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗−𝑤𝑤 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 + 𝑙𝑙 ∗ 𝑝𝑝 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗), (2) 

where: l is the length of a common prefix (up to a maximum of 4 characters);  
p is a constant scaling factor meaning how much the similarity value is adjusted up-
wards for having common prefixes (up to 0.25, otherwise the measure can become 
larger than 1; [26] suggests that p = 0.1). 

Sometimes Winkler’s prefix bonus 𝑙𝑙 ∗ 𝑝𝑝 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) is given only to the pairs hav-
ing Jaro similarity value higher that a particular threshold. This threshold is suggested 
[26] to be equal to 0.7.  

Jaccard similarity index 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 is a similarity measure for finite sets, characters  
in our case. It is computed, for the two strings S1 and S2, as the ratio between the cardi-
nalities of the intersection and union of the character sets in S1 and S2 as shown in (3). 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 = (|𝑆𝑆1| ∩ |𝑆𝑆2|)/(|𝑆𝑆1| ∪ |𝑆𝑆2|) (3) 

Finally, the Sørensen-Dice coefficient is computed by counting identical character 
bi-grams in S1 and S2 and relating these to the overall number of bi-grams (4). 

 )/ (
21

2 SSsd nnnsim += ≡ , (4) 

where: ≡n is the number of bi-grams found in S1 and also in S2; 
21 SS nn , are the numbers  

of all bi-grams in S1 and S2 respectively. 
For the proper use of the implemented SSM functions in the context of terms com-

parison and grouping, it is necessary to determine what would be a reasonable threshold 
to distinguish between (semantically) similar and different terms. For finding that out, 
the following cases in string comparison need to be taken into account. 

Full Positives (FP). In this case, evaluated character strings are fully the same, 
which clearly gives similar (the same) terms. 

Full Negatives (FN). In this case, evaluated character strings are very different and 
the terms in these strings carry different semantics. This is also a clear situation and is 
characterized by low values of similarity measures.  

https://en.wikipedia.org/w/index.php?title=Scaling_factor&action=edit&redlink=1


 

Partial Positives (PP). In this case, evaluated character strings are partially the same 
and the terms in these strings carry the same or similar semantics. The terms in such 
strings are similar, though it may not be fully clear. The following are different catego-
ries of terms that fall into this case: the words in the terms have different endings (e.g. 
plural/singular forms); different delimiters are used (e.g. “-”, or “–”, or “ - ”); a symbol 
is missing, erroneously added, or misspelled (a typo); one term is the sub-string of the 
other (e.g. subsuming the second); one of the strings contains unnecessary extra char-
acters (e.g. two or three spaces instead of one, or noise).  

Partial Negatives (PN). In this case, evaluated character strings are partially the 
same but the terms in these strings carry different semantics. The terms in such strings 
are different, though it may not be fully clear. The following are the categories that fall 
into this case: the terms in the compared strings differ by a very few characters, but 
have substantially different meanings (e.g. “deprecate” versus “depreciate”); the com-
pared multi-word terms have common word(s) but fully differ in their meanings (e.g. 
“affect them” versus “effect them”). These PN are the hardest case to be detected.  

The test set of term pairs falling into the cases and categories described above has 
been manually developed6. For each pair of terms in this test set, all four selected string 
similarity measures have been computed. The extract is presented in Table 2. 

Table 2: Similarity measures for different test cases 

                                                           
6 The test set and computed term similarity values are publicly available at 

https://github.com/OntoElect/Data/blob/master/STG/Test-Set.xls  

Ca-
se 

Cate-
gory 

Terms Pair Sørensen-
Dice 

Jaccard Jaro Jaro-
Winkler 

Different 
(FN) 

whirled | world 0.0 0.5 0.790 0.811 
traces | creta 0.0 0.833 0.588 0.588 
time domain | ontology lifecycle 0.0 0.428 0.445 0.445 

Same (FP) identical strings | identical strings 1.0 1.0 1.0 1.0 

Si
m

ila
r S

em
an

tic
s (

PP
) 

Ex
tra

  
ch

ar
ac

-
te

rs
 *system?problems | system problems 0.814 0.769 0.936 0.936 

sad data mining | sqr data mining 0.769 0.818 0.859 0.873 

C
om

m
on

 
pa

rts
  

(w
or

ds
) marcov chain monte carlo methods | 

monte carlo methods 0.782 0.766 0.629 0.666 

data mining algorithm | data mining 0.642 0.666 0.842 0.904 
cation error | error 0.533 0.333 0.427 0.427 

Ty
po

s fraud detection | froud ditection 0.714 0.916 0.859 0.887 
monte carlo | monte ??rlo 0.7 0.727 0.878 0.927 
data mining | data minin 0.941 0.875 0.969 0.981 

D
iff

er
e

nt
 

de
lim

ite  computer science | computerscience 0.896 0.916 0.979 0.987 
serial episodes | serial&&episodes 0.827 0.818 0.936 0.961 
data cube | data_cube 0.75 0.777 0.925 0.955 

D
iff

er
en

t  
en

di
ng

s network structure | network structures 0.969 1.0 0.981 0.988 
time complexity | time complexities 0.896 0.833 0.981 0.951 
value | values 0.888 0.833 0.918 0.951 

D
iff

er
en

t S
e-

m
an

tic
s  

C
om

m
on

  
pa

rts
  

(w
or

ds
) 

database  |  military base 0.400 0.500 0.410 0.410 
brainstorm |  stormy weather 0.363 0.428 0.509 0.509 
iron clad |  iron maiden 0.444 0.636 0.804 0.882 
jellyfish |  fish tank 0.352 0.307 0.614 0.614 
four delegates | delegated authority 0.451 0.666 0.557 0.557 

https://github.com/OntoElect/Data/blob/master/STG/Test-Set.xls


 

Table 3: Average string similarity measure values for different categories of term pairs  
from the test set 

Case / Category Items in 
Test Set 

Sørensen-
Dice 

Jaccard Jaro Jaro-
Winkler 

Different strings (FN) 6 0.03 0.45 0.55 0.55 
Identical strings (FP) 3 1.00 1.00 1.00 1.00 
Similar Semantics (PP) 32 0.71 0.72 0.63 0.70 
- Unnecessary (extra) characters 7 0.8401 0.8820 0.8714 0.8784 
- Common parts (words) 6 0.7122 0.7280 0.6375 0.7043 
- Typos 6 0.7797 0.8637 0.8863 0.9220 
- Different delimiters 6 0.7860 0.8473 0.9125 0.9442 
- Different endings 7 0.8911 0.9135 0.9410 0.9590 
Different Semantics (PN) 18 0.89 0.89 0.89 0.91 
- Common parts (words) 11 0.4336 0.5221 0.6161 0.6408 
- Very few character differences 7 0.8826 0.8845 0.8914 0.9059 

Total: 59     

Table 4: Term similarity thresholds chosen for experimental evaluation 

Method 
Term Similarity Thresholds 

Min Ave-1 Ave-2 Max 
Sørensen-Dice 0.71 0.76 0.83 0.89 
Jaccard 0.72 0.77 0.83 0.89 
Jaro 0.63 0.72 0.80 0.89 
Jaro-Winkler 0.70 0.77 0.84 0.91 

 
The average values of all four chosen similarity measures for each category have 

been computed using all the test set term pairs falling into this category. These values 
are presented in Table 3. Term similarity thresholds have to be chosen such that full 
and partial negatives are regarded as not similar, but full and partial positives are re-
garded as similar. Hence, for the case of partial positives, the thresholds have to be 
chosen as minimal of all the case categories, and for the partial negatives – as the max-
imal of all the case categories. The values of case thresholds are shown in bold in Table 
3. These are further used as the margins for relevant threshold intervals in our experi-
ments. These intervals have been evenly split by the four threshold points, as presented 
in Table 4. The requirements for partial positives and negatives unfortunately contradict 
to each other. For example, if a threshold is chosen to filter out partial negatives, also 
some of the partial positives will be filtered out. Therefore, subsuming that partial neg-
atives are rare, it has been decided to use the thresholds for partial positives. 
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deprecate against | depreciate against 0.909 1.0 0.903 0.941 
alternately move | alternatively move 0.933 0.916 0.9 0.94 
affect them | effect them 0.9 0.758 0.906 0.906 



 

4 OntoElect and the Refinement of the THD Algorithm 

OntoElect, as a methodology, seeks for maximizing the fitness of the developed ontol-
ogy to what the domain knowledge stakeholders think about the domain. Fitness is 
measured as the stakeholders’ “votes” – a measure that allows assessing the stakehold-
ers’ commitment to the ontology under development, reflecting how well their senti-
ment about the requirements is met. The more votes are collected, the higher the com-
mitment is expected to be. If a critical mass of votes is acquired (say 50%+1, which is 
a simple majority vote), it is considered that the ontology meets the requirements satis-
factorily.  

Unfortunately, direct acquisition of requirements from domain experts is not very 
realistic. The experts are expensive and not willing to do the work, which falls out of 
their core activity. That is why the OntoElect approach focuses on the indirect collec-
tion of the stakeholders’ votes by extracting these from high quality and reasonably 
high impact documents authored by the stakeholders.  

An important feature to be ensured for knowledge extraction from text collections is 
that the dataset needs to be representative to cover the opinions of the domain 
knowledge stakeholders satisfactorily fully. OntoElect suggests a method to measure 
the terminological completeness of the document collection by analysing the saturation 
of terminological footprints of the incremental slices of the document collection [2]. 

The approach followed in our work is finding the terminological core of a document 
collection by measuring terminological saturation [2, 3]. This measurement is done us-
ing our terminological difference measure (thd, [2]) which is a variant of a Manhattan 
distance measure (see e.g. [18]) or Minkovski’s distance with p=1 [38].   

The full texts of the documents from a collection are grouped in datasets in the order 
of their timestamps. As pictured in Fig. 1 (a), the first dataset D1 contains the first por-
tion of (inc) documents. The second dataset D2 contains the first dataset D1 plus the 
second incremental slice of (inc) documents. Finally, the last dataset Dn contains all the 
documents from the collection.  

At the next step of the OntoElect workflow, the bags of multi-word terms  
B1, B2, …, Bn are extracted from the datasets D1, D2, …, Dn together with their signifi-
cance (c-value) scores, using UPM Term Extractor software [36]. An example of an 
extracted bag of terms is shown in Fig. 1 (b).   

  

  
(a) (b) 

Fig. 1: (a) Incrementally enlarged datasets in OntoElect; (b) An example of a bag of terms ex-
tracted by UPM Term Extractor [36]. 



At the subsequent step, every extracted bag of terms Bi, i = 1, …, n is processed as 
follows. Firstly, an individual term significance threshold (eps) is computed to cut off 
those terms that are not within the majority vote. The sum of c-values with individual 
values above eps form the majority vote if this sum is higher than ½ of the sum of all  
c-values. Secondly, insignificant term candidates are cut-off at c-value < eps. Thirdly, 
the normalized scores are computed for each individual term: n-score = c-value / 
max(c-value). Finally, the result is saved in the bag of retained significant terms Ti. 
After this step only significant terms, that represent the majority vote, are considered. 
Ti are then evaluated for saturation by measuring pair-wise terminological difference 
between the subsequent bags Ti and Ti+1, i = 0, …, n-1. So far in OntoElect, it has been 
done by applying the baseline THD algorithm7 [2] presented in Fig. 2. 

Algorithm THD. Compute Terminological Difference between Bags of Terms 
Input:  
 Ti, Ti+1 – the bags of terms with grouped similar terms. 
      Each term Ti.term is accompanied with its T.n-score.  
      Ti, Ti+1 are sorted in the descending order of T.n-score. 
 M –  the name of the string similarity measure function to compare terms 
 th – the value of the term similarity threshold from within [0,1] 
Output: thd(Ti+1, Ti), thdr(Ti+1, Ti) 
1.  sum := 0 
2.  thd := 0 
3.  for k := 1, │Ti+1│ 
4.    sum :=  sum + Ti+1.n-score[k]  
5.    found : = .F.  
6.    for m := 1, │Ti│ 
7.    if (Ti+1.term[k] = Ti.term[m])  if (M(Ti+1.term[k], Ti.term[m], th)) 
8.           then  
9.             thd += │Ti+1.n-score[k] - Ti.n-score[m]│ 
10.            found := .T. 
11. end for 
12. if (found = .F.) then thd += Ti+1.n-score[k]  
13. end for 
14. thdr := thd  / sum   

Fig. 2: Baseline THD algorithm [2] for measuring terminological difference in a pair of bags of 
terms and its refinement. Baseline THD uses string equalities for comparing terms (dashed 
rounded rectangle in line 7). The refinements are shown in solid rounded rectangles. Refined 
THD has two more input parameters (M and th) and uses M for comparing terms (line 7).   

In fact, the THD algorithm accumulates the n-score differences, in the thd value for 
the bag Ti+1, if there were the same terms in Ti and Ti+1. If there was no the same term 
in Ti, it adds the n-score of the orphan to the thd value of Ti+1. After thd has been com-
puted, the relative terminological difference thdr receives its value as thd divided by 
the sum of n-scores in Ti+1.  

Absolute (thd) and relative (thdr) terminological differences are computed for fur-
ther assessing if Ti+1 differs from Ti more than the individual term significance threshold 

                                                           
7 The baseline THD algorithm is implemented in Python and is publicly available at 
https://github.com/OntoElect/Code/tree/master/THD  
 

https://github.com/OntoElect/Code/tree/master/THD


 

eps. If not, it implies that adding an increment of documents to Di for producing Di+1 

did not contribute any noticeable amount of new terminology. Hence, the subset Di+1 of 
the overall document collection may have become terminologically saturated. How-
ever, to obtain more confidence about the saturation, OntoElect suggests that more sub-
sequent pairs of Ti and Ti+1 are evaluated. If stable saturation is observed, then the pro-
cess of looking for a minimal saturated sub-collection could be stopped. 

  
Algorithm STG. Group similar terms in the bag of terms 
Input:  
 T  – a bag of terms. Each term T.term is accompanied with its  
      T.n-score. T is sorted in the descending order of T.n-score. 
 M – the name of the string similarity measure function to compare  
     terms 
 th – the value of the term similarity threshold from within [0,1] 
Output: T with grouped similar terms 
1.  sum := 0 
2.  for k = 1,│T│ 
3.    term :=  T.term[k] 
4.    n-score := T.n-score[k] 
5.    count := 1  
6.    for m = k+1,│T│ 
7.     if M(term, T.term[m], th)  
8.           then  
9.             n-score += T.n-score[m]  
10.            count += 1 
11.            remove(T[m]) 
12.   end for 
13.   T.n-score[k] := n-score / count 
14. end for 

 
Fig. 3: Similar Term Grouping (STG) algorithm  

Our task is to modify the THD algorithm in a way to allow finding not exactly the 
same but sufficiently similar terms by applying string similarity measures with appro-
priate thresholds, as explained in the previous Section 3. For that, the preparatory sim-
ilar term grouping step has been introduced to avoid duplicate similarity detection. For 
each of the compared bags of terms Ti and Ti+1 the similar term grouping (STG) algo-
rithm is applied at this preparatory step – see Fig. 3. After term grouping is accom-
plished for both bags of terms, the refined THD algorithm (Fig. 2 – rounded rectangles) 
is performed to compute the terminological difference between Ti and Ti+1.  

5 Evaluation 

This section reports on our evaluation of the refined THD algorithm against the baseline 
THD [2]. This evaluation is performed using the workflow of the OntoElect Require-
ments Elicitation Phase [3] and three document collections from different domains: 
TIME, DMKD-300, and DAC-cleaned. Section 5.1 outlines the set-up of our evaluation 
experiments. The document collections are presented in Section 5.2.  
The results of our evaluation experiments are discussed in Section 5.3.   



5.1 The Set-up of the Experiments 

The objective of our experiments is to find out if using the refined THD algorithm 
yields quicker terminological saturation compared to the use of the baseline THD algo-
rithm. We are also looking at finding out which string similarity measures best fit for 
measuring terminological saturation.  

For making the results comparable, the same datasets, created from the document 
collections as described in Section 5.2, are fed into both the refined and baseline THD 
algorithms. For each document collection, we apply:  

1. The refined THD – sixteen times – one per individual string similarity measure M 8 
(Section 3) and per individual term similarity threshold th (Table 4); and  

2. The baseline THD – one time as it does not depend on a term similarity threshold 

The values of: (i) the number of retained terms; (ii) absolute terminological differ-
ence (thd); and (iii) the time taken to perform similar terms grouping by the STG algo-
rithm (sec) are measured.   

Finally, to verify if our SSM implementations, and hence the STG and refined THD 
algorithms, are correct, we check if the refined THD algorithm implementation returns 
the results which are satisfactorily similar to that of the baseline THD when the terms 
similarity threshold is set to 1.00. This threshold value straightforwardly means that 
only equivalent strings have to be regarded as similar terms.   

All the computations are run using a Windows 7 64-bit PC with: Intel® Core™ i5 
CPU, M520 @ 2.40 GHz; 8.0 Gb on-board memory; NVIDIA Geforce GT330M GPU. 

5.2 Experimental Data 

The document collections used in our experiments are all composed of the papers pub-
lished at the peer-reviewed international venues in three different domains:  

• The TIME collection contains the full text papers of the proceedings of the Time 
Representation and Reasoning (TIME) Symposia series9 published between 1994 
and 2013 

• The DMKD-300 collection is composed of the subset of full text articles from the 
Springer journal on Data Mining and Knowledge Discovery10 published between 
1997 and 2010 

• The DAC-cleaned collection comprises the subset of full text papers of the Design 
Automation Conference11 published between 2004 and 2006 

                                                           
8 The functions for all the four selected SSMs have been implemented in Python 3.0 

and return real values within [0, 1]. These functions are publicly available at: 
https://github.com/OntoElect/Code/tree/master/STG/core/methods  

9  http://time.di.unimi.it/TIME_Home.html  
10 https://link.springer.com/journal/10618  
11 http://dac.com/  

https://github.com/OntoElect/Code/tree/master/STG/core/methods
http://time.di.unimi.it/TIME_Home.html
https://link.springer.com/journal/10618
http://dac.com/


 

The chronological order of adding documents is chosen for generating experimental 
datasets from the documents of all the three collections using our Dataset Generator 
[37]. The characteristics of all the document collections and generated datasets are sum-
marized in Table 5.  

Table 5: The characteristics of the used document collections and datasets 

Document 
Collection 

Paper Type 
and Layout 

No  
Doc Noise Processing Inc No  

Datasets 
TIME conference, IEEE  

2-column 
437 manually  

cleaned 
manual conversion  
to plain text, automated 
dataset generation 

20 papers 22 

DMKD-300 journal, Springer  
1-column 

300 not cleaned, 
moderately noisy 

automated [37] 20 papers 15 

DAC- 
cleaned 

conference, IEEE 
2-column 

506 quite noisy automated, stop terms 
removal [37] 

20 papers 26 

5.3 Results and Discussion 

The measurements, taken in our experiments for different collections and terms simi-
larity threshold points, are not presented in the paper in a tabular form due to page 
limits. Instead, the results are presented diagrammatically in figures below and made 
available in full, including values, publicly online12.  

The results of our measurements of terminological saturation (thd) are pictured  
in Fig. 4–6. Saturation (thd) measurements reveal that the refined THD algorithm de-
tects terminological saturation faster than the baseline THD algorithm, no matter what 
the chosen term similarity measure (M) or similarity threshold (th) is. If the results for 
different measures are compared, then it may be noted that the respective saturation 
curves behave differently, depending on the similarity threshold point. 

Overall, as one could see in Fig. 4–6 (a) – (d), the use of the Sørensen-Dice measure 
demonstrates the least volatile behaviour along the terms similarity threshold points. 
Sørensen-Dice also results in making the refined THD algorithm to detect saturation 
slower than the three other measures for Min, Ave-1, and Ave-2. For Max, it is as fast 
as Jaro and slightly slower than Jaccard and Jaro-Winker.  

One more observation is that, integrally, all the implemented term similarity 
measures coped well with retaining significant terms from all the three document col-
lections. This is indicated by the co-locations of terminology contribution peaks at the 
diagrams (a) – (d) in Fig. 4–6. One can see in Fig. 4–6(d), for the Max threshold point, 
that all the string similarity methods curves follow the shape of the baseline THD curve 
quite closely. Hence, they have the peaks exactly at the same thd measurement points 
where the baseline has, pointing at more new significant terms. The most sensitive to 
terminology contribution peaks was Sørensen-Dice. 

                                                           
12 https://github.com/OntoElect/Experiments/tree/master/STG. File names are {TIME, 

DMKD-300, DAC-cleaned}-Results-Alltogether-{min, ave, ave2, max, 1}-th.xlsx. 

https://github.com/OntoElect/Experiments/tree/master/STG


 
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
Legend:  

Fig. 4: Terminological saturation measurements on TIME for different similarity threshold points 

 

 
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
Legend:  

Fig. 5: Terminological saturation measurements on DMKD-300 for different similarity threshold 
points   

 
 



 

 
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
Legend:  

Fig. 6: Terminological saturation measurements on DAC-cleaned for different similarity thresh-
old points   

The diagrams in Fig. 7–9 show the times spent by the STG algorithm to detect and 
group similar terms for different chosen term similarity thresholds. One particular dia-
gram corresponds to a particular terms similarity threshold point (Min, Ave-1, Ave-2, 
and Max). 

 

  
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
    Legend:   

Fig. 7: Time (sec) spent by the STG algorithm for grouping similar terms on TIME bags of terms 



 

  
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
    Legend:   

Fig. 8: Time (sec) spent by the STG algorithm for grouping similar terms on DMKD-300 bags 
of terms 

  
         (a) Min term similarity thresholds     (b) Ave-1 term similarity thresholds 

  
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 
    Legend:   

Fig. 9: Time (sec) spent by the STG algorithm for grouping similar terms on DAC-cleaned bags 
of terms 

It needs to be mentioned that the introduction of string similarity measures in the 
computation of terminological difference (THD algorithm) increases the computational 



 

complexity quite substantially. As it could be noticed in Fig. 7–9 (a) – (d), the times 
grow with the value of the terms similarity threshold (th) and reach thousands of sec-
onds for Max threshold values. It is worth acknowledging that Sørensen-Dice and Jac-
card are substantially more stable to the increase of th than Jaro and Jaro-Winkler. 
Sørensen-Dice takes, however, times more time than Jaccard. From the other hand, 
Jaccard is not very sensitive to terminological peaks and retains significantly less terms 
than Sørensen-Dice. 

Fig. 10 pictures the proportions of the retained to all extracted terms when saturation 
has been detected, computed at different terms similarity threshold points, for the bags 
of terms extracted from our three document collections. It is clear from Fig. 10 that 
Sørensen-Dice yields the second highest proportions for all the collections and used 
term similarity thresholds, after the baseline, which does not group terms.   

 

                
         (a) TIME collection         (b) DMKD-300 collection      (c) DAC-cleaned collection 
     Legend:  

Fig. 10: The proportions of retained to all extracted terms for different term similarity measures 
per document collections 

Finally, the terms similarity threshold is set to 1.00 and the refined THD implemen-
tation is evaluated for all three collections for the pairs of the bags of terms in a few 
pair vicinity of the saturation points. The task is to check if the refined THD with similar 
terms grouping: (i) detects terminological saturation at the same point as the baseline 
THD, therefore, thd values are measured; and (ii) retains the same number of significant 
terms as the baseline THD, therefore, the numbers of retained terms are measured. We 
are also interested in comparing the time taken to accomplish term grouping (STG). 

The results for the DMKD-300 collection are presented graphically in Fig. 11. The 
results for the TIME and DAC-cleaned collections13 are very much similar to these for 
DMKD-300 and do not change our conclusion and recommendation. 

It may be seen in Fig. 11 (a) and (b) that Jaro and Jaro-Winkler implementations 
fully repeat the baseline THD results, both in the measured thd values and numbers of 
retained significant terms. Sørensen-Dice behaves similarly to Jaro and Jaro-Winkler 
up to the saturation point. After that, it returns slightly lower thd and retains slightly 

                                                           
13 These results could be accessed at https://github.com/OntoElect/Experi-

ments/tree/master/STG. File names are {TIME, DMKD-300, DAC-cleaned}-
Results-Alltogether-1-th.xlsx. 

https://github.com/OntoElect/Experiments/tree/master/STG
https://github.com/OntoElect/Experiments/tree/master/STG


less significant terms. This behaviour is acceptable as the measurements after the satu-
ration point are of marginal interest. Jaccard implementation however appears to return 
significantly lower thd values and significantly less retained terms at all measurement 
points – before and after detecting saturation. Jaccard also detects saturation one meas-
urement point earlier than the rest of the SSMs, which is not correct for this threshold 
(1.00).  

Fig. 11 (c) reveals that, for being accurate in measurements at the very high threshold 
of 1.00, Jaro and Jaro-Winkler take too much of a computational overhead. Sørensen-
Dice and Jaccard however remain more stable to the increase of the th, similarly as it 
was before for Ave1, Ave2, and Max threshold points. 

 

                   
               (a) thd values                (b) numbers of retained terms         (c) time taken by STG 
Legend: 

Fig. 11: Evaluation of the refined THD implementation at th = 1.00 on DMKD-300 bags of terms. 
Vertical dashed lines mark terminological saturation point.   

The summary of our experimental findings is collected in Table 7 in the form of the 
rankings. We rank the performance of all the evaluated SSMs and the baseline THD on 
a scale from 1 (the best) to 5 (the worst) for every document collection and every terms 
similarity threshold point (Min, Ave1, Ave2, Max) within each collection. We also look 
at the average rankings for all four thresholds points. 

The aspects we look at in this ranking are: (i) the fastness of detecting terminological 
saturation, the faster – the better (Fig. 4 – 6); (ii) the number of retained significant 
terms, the more – the better (Fig. 10); and (iii) the time taken by the method to accom-
plish the computation, the less – the better (Fig. 7 – 9).  

Table 8 contains the values of performance indices for different SSMs and the base-
line THD regarding the four terms similarity thresholds points and their average values. 
This is done for two cases: (a) taking into account the execution time criterion (Less 
Time Taken in Table 7); and (b) not taking the execution time criterion into account. It 
has been done to analyse the value of using an SSM if the computational overhead is 
not important. The values were calculated by summing all the ranks for different col-
lections and criteria taken from the corresponding threshold point rows of Table 7.  



 

Table 7: The ranking of the evaluated SSMs 

  Rank (1-5) 
Crite-
rion 

String Similarity 
Threshold 

Baseline 
THD 

Sørensen-
Dice Jaccard Jaro Jaro-

Winkler 
TIME Collection 

Fa
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 d
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-
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n 
of
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tu

-
ra

tio
n 

Min 5 4 1 1 1 
Ave1 5 4 1 1 1 
Ave2 5 4 1 1 1 
Max 5 3 1 3 1 

Average 5 3.75 1 1.5 1 

M
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e 
sig

ni
fi-

ca
nt

 te
rm

s r
e-

ta
in

ed
 

Min 1 2 3 5 4 
Ave1 1 2 4 5 3 
Ave2 1 2 5 3 4 
Max 1 2 5 3 4 

Average 1 2 4.25 4 3.75 

Le
ss

 ti
m

e 
ta

ke
n 

Min 1 5 3 2 4 
Ave1 1 4 2 3 5 
Ave2 1 3 2 5 4 
Max 1 3 2 5 4 

Average 1 3.75 2.25 3.75 4.25 
DMKD-300 Collection 

Fa
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-
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of

 sa
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n 

Min 5 4 3 1 1 
Ave1 5 4 1 1 1 
Ave2 5 4 1 1 1 
Max 5 1 1 1 1 

Average 5 3.25 1.5 1 1 

M
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fi-

ca
nt
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Min 1 2 3 5 4 
Ave1 1 2 4 5 3 
Ave2 1 2 5 3 4 
Max 1 2 5 3 4 

Average 1 2 4.25 4 3.75 

Le
ss

 ti
m

e 
ta

ke
n 

Min 1 5 2 3 4 
Ave1 1 4 2 5 3 
Ave2 1 3 2 5 4 
Max 1 3 2 5 4 

Average 1 3.75 2 4.5 3.75 
DAC-cleaned Collection 

Fa
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 sa
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Min 5 4 3 1 2 
Ave1 5 4 1 3 1 
Ave2 5 4 1 3 1 
Max 5 4 1 1 1 

Average 5 4 1.5 2 1.25 

M
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ni
fi-

ca
nt
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Min 1 2 3 5 4 
Ave1 1 2 4 3 5 
Ave2 1 2 5 3 4 
Max 1 2 5 3 4 

Average 1 2 4.25 3.5 4.25 

Le
ss

 ti
m

e 
ta

ke
n 

Min 1 5 2 3 4 
Ave1 1 4 2 5 3 
Ave2 1 3 2 5 4 
Max 1 3 2 5 4 

Average 1 3.75 2 4.5 3.75 



These sums have further been subtracted from the highest rank value14 in order to 
revert to “the higher – the better” scale in Table 8. Performance indices are also pictured  
in Fig. 12. 

Table 8: The performance indices of the evaluated SSMs with and without accounting  
for taken execution time 

Threshold Baseline 
THD 

Sørensen-
Dice Jaccard Jaro Jaro-

Winkler 
(a) Execution time criterion is taken into account 

Min 12 0 10 7 5 
Ave1 12 3 12 2 8 
Ave2 12 6 9 4 6 
Max 12 10 9 4 6 

Average (Table 7) 12 4.75 10 4.25 6.25 
(b) Execution time criterion is not taken into account 

Min 0 0 2 0 2 
Ave1 0 0 3 0 4 
Ave2 0 0 0 4 3 
Max 0 4 0 4 3 

Average (Table 7) 0 1 1.25 2 3 

 

                         
(a) Accounting for execution time              (b) Without accounting for execution time 

              Legend:  

Fig. 12: Performance indices of the evaluated SSMs per terms similarity thresholds with (a) and 
without (b) taking their execution time ranks into account. The points in the rounded dashed 
rectangles represent the averages for all the thresholds.   

Regarding the evaluation of correctness at th = 1.00, the SSM, that behaves both 
correctly, up to the saturation point, and computationally efficiently, is Sørensen-Dice. 
Jaro and Jaro-Winkler, though are correct, take too much of the computational overhead 
at this high th value. Jaccard is not fully correct. 

Let us now summarize the comparative analysis of the performance of all the SSMs 
in the two cases, (a) and (b), presented in Table 8 and Fig. 12.   

                                                           
14 The rank value is the sum of all ranks for a method within a particular threshold in 

Table 7. The highest rank value indicates the lowest performance. For case (a) it 
equals to 12, which is for Sørensen-Dice at Min threshold. For case (b) it equals to 
4.  



 

In case (a), when the computation time is taken into account in the comparative rat-
ing, the summary is the following. Probably surprisingly, Jaccard, which is computa-
tionally the most lightweight SSM (Fig. 7–9), demonstrates the best overall perfor-
mance. In this case, it still does not outperform the baseline THD because: (i) it takes 
extra time for STG; and (ii) it retains less significant terms15. Jaccard is the best bal-
anced on all evaluation criteria, compared to the rest of the evaluated SSMs. One im-
portant drawback of Jaccard is that it does not perform fully correctly at th = 1.00. 
Therefore, the use of Jaccard may be recommended in the cases of low terms similarity 
thresholds (like Min or Ave1) and hard constraints on the time of computation. Perfor-
mance indices are also good for Sørensen-Dice and Jaro-Winkler which both work ac-
ceptably correctly at th = 1.00. These two SSMs appear to be mutually complementary 
in the terms that: (i) Jaro-Winkler is better than Sørensen-Dice at lower terms similarity 
thresholds, like Min or Ave1; (ii) Sørensen-Dice outperforms Jaro-Winkler at higher 
terms similarity thresholds, like Ave2 or Max. Jaro in case (a) is a clear negative outlier 
and is not recommended for use.  

In case (b), when the computation time is not taken into account in the comparative 
rating, the summary is different. As it is clearly seen in Fig 12(b), all the SSMs outper-
form the baseline THD on average and at Max threshold. Jaro-Winkler is the best per-
forming for Min and Ave1 thresholds, but gives up to Jaro at Ave2 and Max. It is also 
outperformed by Sørensen-Dice at Max. However, Jaro-Winkler appears to be most 
balanced in performance regarding all the four thresholds, which is highlighted by the 
Avg-All value. Jaccard in case (b) is a clear negative outlier and therefore cannot be 
recommended for use.  

If the assessments for the cases (a) and (b) are combined, the following recommen-
dation could be given. At an expense of a substantially higher execution time, the THD 
algorithm refined by Jaro-Winkler (at all thresholds except Max) or Sørensen-Dice (at 
Max threshold) are our recommended choices for measuring terminological saturation. 
Jaro-Winkler is the first choice, because it is the most balanced in performance for all 
the evaluated thresholds.   

6 Conclusions and Future Work 

In this paper, we investigated if a simple string equivalence measure, used in the base-
line THD algorithm, could be outperformed if a carefully chosen string similarity meas-
ure is used instead.  

Overall, we found out that the use of STG, even at high terms similarity thresholds, 
rewards quite substantially in reducing the volume of processed data. The numbers of 
these gains are provided in the Terminological Core part of Table 9. Depending on how 
fast saturation is achievable in different collections, the use of STG allowed lowering 
the size of a terminological core by 22 to 46 percent.  

                                                           
15 Which should be so as the baseline THD does not group terms. Hence, any alternative 

method that does similar terms grouping retains less significant terms.   



It is also remarkable that, in general, the numbers of retained significant terms, due 
to their grouping, were also decreased substantially, by 44 to 72 percent depending on 
the collection. At the same time, the individual term significance thresholds (eps) were 
very slightly changed. This hints that the use of STG did not result in a noticeable loss 
of significant terms.  

Because of applying our THD algorithm refinement, using all four evaluated SSMs, 
terminological saturation has been detected faster. Hence, in that sense, the refined 
THD with STG outperformed the baseline method. Three of the SSMs gave also ac-
ceptably correct results at th = 1.00. A somewhat discouraging result was, however, 
that the use of SSMs for STG causes a substantial computational overhead. Therefore, 
none of the methods involving STG outperformed the baseline THD integrally if exe-
cution time is an important criterion for assessing performance – case (a) in Table 8 
and Fig.12.  If execution time is not very important and may be disregarded, the result 
is substantially different – case (b) in Table 8 and Fig.12. Overall, putting together the 
findings in these two cases, the recommendation was made to use the THD algorithm 
refined by Jaro-Winkler (at all thresholds except Max) or Sørensen-Dice (at Max thresh-
old) for measuring terminological saturation. Jaro-Winkler was recommended as the 
first choice, because it is the most balanced in performance for all the evaluated thresh-
olds. 

Table 9: The gains of the use of STG and refined THD 

 Satura-
tion 

Point 

Terminological Core Terms 

 No  
Papers 

Volume, 
Mb 

%  
Baseline 

Extracted 
Terms 

Retained 
Terms 

%  
Baseline eps 

 TIME (Max) 
Baseline D11 220 6.55 100.00 287887 7110 100.00 23.77 
Jaccard D6 120 3.53 53.89 190263 2717 38.21 21.00 
Sorensen-Dice D7 140 4.17 63.66 200176 3629 51.04 22.00 
Jaro-Winkler D6 120 3.53 53.89 190263 2717 38.21 21.00 

 DMKD-300 (Max) 
Baseline D3 60 3.14 100.00 89617 7110 100.00 17.00 
Jaccard D2 45 2.46 78.34 67913 2135 30.03 15.50 
Sorensen-Dice D2 45 2.46 78.34 67913 2453 34.50 15.50 
Jaro-Winkler D2 45 2.46 78.34 67913 1963 27.61 15.50 

 DAC-cleaned (Max) 
Baseline D23 460 12.40 100.00 514364 20558 100.00 15.51 
Jaccard D14 280 7.46 60.16 320473 7406 36.02 15.51 
Sorensen-Dice D16 320 8.54 68.87 356749 11528 56.08 15.51 
Jaro-Winkler D14 280 7.46 60.16 320473 8736 42.49 15.51 

  
The plans for our future work are implied by the presented results. Firstly, we would 

like to admit that the test set of term pairs (Table 2) is not big enough to consider the 
choice of the thresholds fully reliable. Therefore, we will extend the test set in short 
term and apply a variation of a clustering technique to check our thresholds. Secondly, 
we would like to explore the ways to improve the performance of the Sørensen-Dice 
and Jaro-Winkler measures implementations, as their high computational complexity 
is the only obstacle to outperform the rest of the evaluated SSMs and, possibly, the 



 

baseline. To put it more generally, we plan to explore the ways to improve the perfor-
mance of similar terms grouping, as the times taken by the STG algorithm are too long. 
Thirdly, we are interested in finding out if a similar terms grouping algorithm, using 
Sørensen-Dice or Jaro-Winkler, would be plausible for grouping features while build-
ing feature taxonomies. This task is on the agenda for the second (Conceptualization) 
phase of OntoElect [3, 39].  
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