
Department of Computer Science, Zaporizhzhia National University
Zhukovs’kogo st. 66 69600 Zaporizhzhia Ukraine

Zaporizhzhia National University
Department of Computer Science
Publication Repository

Archived Manuscript

Title: Similar Terms Grouping Yields Faster Terminological Saturation

Author(s), ORCID(s): Victoria Kosa[0000-0002-7300-8818], David Chaves-Fraga[0000-0003-

3236-2789], Natalya Keberle[0000-0001-7398-3464] and Aliaksandr Birukou[0000-0002-4925-9131]
Group: Intelligent Systems
Project: OntoElect

Published as: Kosa V., Chaves-Fraga D., Keberle N., Birukou A. (2019) Similar
Terms Grouping Yields Faster Terminological Saturation. In: Ermolayev V.,
Suárez-Figueroa M., Yakovyna V., Mayr H., Nikitchenko M., Spivakovsky A. (eds)
Information and Communication Technologies in Education, Research, and Indus-
trial Applications. ICTERI 2018. Communications in Computer and Information
Science, vol 1007. Springer, Cham

Abstract: This paper reports on the refinement of the algorithm for measuring termi-
nological difference between text datasets (THD). This baseline THD algorithm, de-
veloped in the OntoElect project, used exact string matches for term comparison. In
this work, it has been refined by the use of appropriately selected string similarity
measures (SSM) for grouping the terms, which look similar as text strings and pre-
sumably have similar meanings. To determine rational term similarity thresholds for
several chosen SSMs, the measures have been implemented as software functions and
evaluated on the developed test set of term pairs in English. Further, the refined al-
gorithm implementation has been evaluated against the baseline THD algorithm. For
this evaluation, the bags of terms have been used that had been extracted from the
three different document collections of scientific papers, belonging to different sub-
ject domains. The experiment revealed that the use of the refined THD algorithm,
compared to the baseline, resulted in quicker terminological saturation on more com-
pact sets of source documents, though at an expense of a noticeably higher computa-
tion time.
Keywords: Automated Term Extraction, OntoElect, Terminological Difference,
String Similarity Measure, Bag of Terms, Terminological Saturation.

DOI: https://doi.org/10.1007/978-3-030-13929-2_3

https://doi.org/10.1007/978-3-030-13929-2_3

Similar Terms Grouping Yields Faster Terminological
Saturation

Victoria Kosa1 [0000-0002-7300-8818], David Chaves-Fraga2 [0000-0003-3236-2789],
Natalya Keberle1 [0000-0001-7398-3464] and Aliaksandr Birukou3, 4 [0000-0002-4925-9131]

1 Department of Computer Science, Zaporizhzhia National University,
Zaporizhzhia, Ukraine

{victoriya1402.kosa, nkeberle}@gmail.com,
2 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain

dchaves@fi.upm.es
3 Springer-Verlag GmbH, Heidelberg, Germany

aliaksandr.birukou@springer.com
4 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Abstract. This paper reports on the refinement of the algorithm for measuring
terminological difference between text datasets (THD). This baseline THD algo-
rithm, developed in the OntoElect project, used exact string matches for term
comparison. In this work, it has been refined by the use of appropriately selected
string similarity measures (SSM) for grouping the terms, which look similar as
text strings and presumably have similar meanings. To determine rational term
similarity thresholds for several chosen SSMs, the measures have been imple-
mented as software functions and evaluated on the developed test set of term
pairs in English. Further, the refined algorithm implementation has been evalu-
ated against the baseline THD algorithm. For this evaluation, the bags of terms
have been used that had been extracted from the three different document collec-
tions of scientific papers, belonging to different subject domains. The experiment
revealed that the use of the refined THD algorithm, compared to the baseline,
resulted in quicker terminological saturation on more compact sets of source doc-
uments, though at an expense of a noticeably higher computation time.

Keywords: Automated Term Extraction, OntoElect, Terminological Difference,
String Similarity Measure, Bag of Terms, Terminological Saturation.

1 Introduction

The research presented in this paper1 is the part of the development of the methodolog-
ical and instrumental components for extracting representative (complete) sets of sig-
nificant terms from the representative sub-collections of textual documents having min-
imal possible size. These terms are further interpreted as the required features for engi-
neering an ontology in a particular domain of interest. Therefore, it is assumed that the

1 This paper is a refined and extended version of [1].

http://orcid.org/0000-0002-4925-9131
mailto:dchaves@fi.upm.es
mailto:aliaksandr.birukou@springer.com

documents in a collection cover a single and well-circumscribed domain. The main
hypothesis, put forward in this work, is that a sub-collection can be regarded as repre-
sentative to describe the domain, if it is the terminological core. It means that any ad-
ditions of extra documents from the entire collection to this sub-collection do not no-
ticeably change the terminological footprint on the domain. Such a sub-collection is
further considered as complete. Therefore, a representative bag of significant terms de-
scribing its domain can be extracted from it. The approach to assess the representative-
ness does so by evaluating terminological saturation in a document (sub-)collection [2],
[3]. Practically, the approach allows extracting statistically the same set of significant
terms from a part of a collection, instead of processing the whole collection. Automated
term extraction is known to be a computationally bulky process. Therefore, lowering
the number and the overall volume of the input documents might substantially decrease
processing times and improve scalability. For example, the terminological core of the
TIME collection of 437 conference papers (Section 5.2), detected using the baseline
THD algorithm, contains 220 papers (50.34 percent of the total number). We demon-
strate in the paper that using the proposed THD refinement, the size of a terminological
core is additionally lowered by 22 to 46 percent without any loss in quality.

Detecting saturation is done by measuring terminological difference (thd) among the
pairs of the consecutive incrementally enlarged datasets, as described in Section 5. This
measure is based on evaluating differences between individual terms.
A (baseline) THD algorithm for computing thd [2] has been developed and imple-
mented in the OntoElect project2. OntoElect develops a methodology and instrumental
tool suite for refining domain ontologies. It exploits the allusion of public elections to
find out what is the prevailing sentiment of the domain knowledge stakeholders. The
sentiments are elicited indirectly, through terms extraction from a saturated document
collection, describing the domain. Term significance scores are interpreted as the votes
in favour of the corresponding ontology features. The features satisfying a simple ma-
jority of voters are represented by the terms, ordered by descending scores, with the
minimal sum of the scores being higher than 1/2 of the total sum.

The baseline THD algorithm uses a simple string equivalence check for detecting
similar (the same) individual terms. The objective of the research presented in this paper
is to find out if it is possible to achieve better performance in measuring terminological
difference by using a proper string similarity measure to compare individual terms.

The remainder of the paper is structured as follows. Section 2 reviews the related
work and outlines our contributions. Section 3 presents the chosen string similarity
measures and reports about the choice of the proper terms similarity thresholds for
terms grouping. Section 4 sketches out the approach of OntoElect for measuring thd
and presents our refinement of the baseline THD algorithm. Section 5 reports the set-
up and results of our evaluation experiments. Our conclusions are given and plans for
the future work outlined in Section 6.

2 https://www.researchgate.net/project/OntoElect-a-Methodology-for-Domain-Ontol-

ogy-Refinement

https://www.researchgate.net/project/OntoElect-a-Methodology-for-Domain-Ontology-Refinement
https://www.researchgate.net/project/OntoElect-a-Methodology-for-Domain-Ontology-Refinement

2 Related Work

The work related to the presented research has been sought in: (i) automated term ex-
traction (ATE) from English texts; (ii) string similarity (distance) measurement in the
pairs of text strings.

2.1 Automated Term Extraction

In the majority of approaches to ATE, e.g. [4] or [5], processing is done in two consec-
utive phases: linguistic processing and statistical processing. Linguistic processors, like
POS taggers or phrase chunkers, filter out stop words and restrict candidate terms to
n-gram sequences: nouns or noun phrases, adjective-noun and noun-preposition-noun
combinations. Statistical processing is then applied to measure the ranks of the candi-
date terms. These measures are [6]: either the measures of unithood, which focus on the
collocation strength of units that comprise a single term; or the measures of termhood,
which point to the association strength of a term to domain concepts.

For unithood, the measures are used such as mutual information [7], log likelihood
[7], t-test [4, 5], modifiability and its variants [8, 5]. The measures for termhood are
either term frequency-based (unsupervised approaches) or reference corpora-based
(semi-supervised approaches). The most used frequency-based measures are TF/IDF
(e.g. [9, 10]), weirdness [11], and domain pertinence [12]. More recently, hybrid ap-
proaches were proposed, that combine unithood and termhood measurements in a sin-
gle value. A representative measure is c/nc-value [13]. C/nc-value-based approaches to
ATE have received their further evolution in many works, e.g. [4, 12, 14] to mention a
few.

Linguistic processing is organized and implemented in a very similar way in all ATE
methods, except some of them that also include filtering out stop words. Stop words
could be filtered out also at a cut-off step after statistical processing. Statistical pro-
cessing is sometimes further split in two consecutive sub-phases of term candidate scor-
ing, and ranking. For term candidates scoring, reflecting its likelihood of being a term,
known methods could be distinguished by being based on measuring occurrences fre-
quencies, including word association (c.f. [9]) or assessing occurrences contexts, using
reference corpora, e.g. Wikipedia [15], or topic modelling [16, 17].

2.2 Text Similarity Measurement

In the recent surveys on text similarity measurement approaches, e.g. [18, 19], methods
(or measures)3 are grouped based on analysing: (i) characters and their sequences; (ii)
tokens; (iii) terms; (iv) text corpora; or (v) synsets. In [19] hybrid measures that allow
fuzzy matching between tokens are also mentioned. Brief characteristics of the groups
are given immediately below. The individual methods belonging to the groups are de-
tailed in Table 1.

3 In this context, we do not distinguish a method and a measure. A method is understood

as a way to implement the corresponding measure function.

Character- and character sequence-based measures compare characters and their
sequences in strings, taking into account also the order of characters. These include the
measures of common character sequences, e.g. substrings; edit distance; the number
and order of the common characters between two strings.

Token-based methods model a string as a set of tokens. Individual characters, char-
acter n-grams, or separate words could be regarded as tokens. Quantification is done by
computing the size of the overlap normalized by a measure of string length.

Term-based measures are similar to token-based measures but the tokens are dif-
ferent. Those are not character n-grams but terms, which are word n-grams with possi-
bly varying n. Furthermore, the weights of the terms, e.g. their frequencies of occur-
rence, are taken into account. These measures apply more on long character strings, or
documents, hence are better suited to measure document or text dataset similarity.

Corpus-based and synset-based (or knowledge-based) methods are very margin-
ally relevant to our purposes in this paper. Corpus-based approaches determine the sim-
ilarity between words based on (statistical) information gained from large text corpora.
Synset-based approaches rely on semantic networks, like WordNet [20], to derive se-
mantic similarity between words. Both approaches are therefore too bulky computa-
tionally, though may be applied to ATE – e.g. for deciding about cut-offs. Term group-
ing, the technique we report in this paper, is however performed after the terms have
already been extracted. Hence, we omit looking at corpus- and synset-based measures.

The overview of the most popular text / string similarity measures, grouped by
method types, is provided in Table 1. This overview is by far not complete as many
other variants of SSM are available in the literature. Those we omit are however based
on the same principles compared to the listed in Table 1, to the best of our knowledge.

Table 1: The overview of text similarity / distance measures

Name,
source Description Specifics

Relevance
Term

Similarity thd 4

Character- and character sequence-based measures
Longest
Common
Substring
[21]

common character sequence
based measure

returns the integer
length of the longest
common substring;
could be normalized
by the total length

moderate irrelevant

Levenshtein
distance [22]

edit distance based measure returns an integer
number of required ed-
its

marginal irrelevant

Hamming
distance [23]

edit distance based measure strings have to be of
equal length

marginal irrelevant

Monger-
Elkan dis-
tance [24]

edit distance based measure returns an integer
number of required ed-
its

marginal irrelevant

4 thd is the measure for terminological difference developed in OntoElect [2] and used

in our approach – see also Section 4. Hence, “relevant” in this column means being
appropriate for measuring terminological difference between documents of text da-
tasets.

Name,
source Description Specifics

Relevance
Term

Similarity thd 4
Jaro distance
[25]

counts the minimal number of
one character transforms in one
string for arriving at the other
string

returns a normalized
real value from [0, 1]

good irrelevant

Jaro-Winkler
distance [26]

refines Jaro measure by using a
prefix scale value – prioritizes
the stings that match at the be-
ginning

returns a normalized
real value from [0, 1]

good irrelevant

Token-based measures
Sørensen-
Dice coeffi-
cient [27, 28]

Counts the ratio of identical
character bi-grams to the over-
all number of bi-grams in both
strings

returns a normalized
real value from
[0, 1]

good irrelevant

Jaccard simi-
larity [29]

counts the ratio between the
cardinalities of the intersection
and union of the character sets
(uni-grams) in the strings

returns a normalized
real value from
[0, 1]

good irrelevant

Cosine simi-
larity [19]

Size of overlap in character
uni-grams divided by the
square root of the sum of the
squared total numbers of uni-
grams in both strings

returns a normalized
positive real value

marginal
(computa-
tionally
hard)

irrelevant

Term-based measures
Euclidian dis-
tance [30]

Measures traditional Euclidian
distance in an n-dimensional
metric space (of positive reals)

works for documents;
returns a real positive
value

irrelevant relevant

Cosine simi-
larity [31]

Computes a cosine between
two vectors in the term space;
vectors are specified by term
weights (e.g. TF of C-value)

works for documents;
returns a normalized
positive real value

irrelevant marginal

Pearson cor-
relation [30]

Computes Pearson correlation
for a pair of vectors in the term
vector space

works for documents;
returns a normalized
real value that ranges
from +1 to −1; it is 1
when vectors are fully
identical

irrelevant marginal

Manhattan
(block) dis-
tance [18]

the distance to be traveled to
get from one data point to the
other if a grid-like path is fol-
lowed

works for documents;
resembles the thd
measure [2]

irrelevant relevant

The authors of [32] present an expansion-based framework to measure string simi-
larities efficiently while considering synonyms. This result is also relevant to our work
as a synonym is one of the categories of term candidates that may need to be considered
for grouping in our settings. In [32], it is also acknowledged that there is
a rich set of string similarity measures available in the literature, including character
n-gram similarity [33], Levenshtein distance [22], Jaro-Winkler measure [26], Jaccard
similarity [29], TF/IDF based cosine similarity [34], and Hidden Markov Model-based
measure [35].

2.3 Contributions

In this work, we do not contribute any novel method for ATE. The c-value method [13]
implemented in the UPM Term Extractor [36] is used as this combination of the method

and implementation has been experimentally proven to be the best appropriate for de-
tecting terminological saturation [37].

In difference and complementary to the abovementioned relevant work, we contrib-
ute several novel things. Firstly, we propose a way to rationally choose the thresholds
that are used to regard string similarity as term similarity (Section 3). Secondly, we
develop an algorithm for similar terms grouping that uses string similarity measures
and term similarity thresholds (Section 4). Based on its use, we propose the refinement
of the baseline THD algorithm [2] for measuring terminological difference between
two subsequent text datasets (Section 4).

3 The Choice of SSMs and Terms Similarity Thresholds

From the variety of SSMs, mentioned above, due to the specifics of our task of the
approximate comparison of short strings containing a few words, we filter out those:
(i) that require long strings or sets of strings of a considerably big size; (ii) that are
computationally hard. We also keep the representatives of all kinds of string metrics in
our short list as much as possible. As a result, we form the following list of measures
to be considered for further use:

• Character-based measures: Levenshtein distance [22], Hamming distance [23], Jaro
similarity [25], and Jaro-Winkler similarity [26]

• Token-based measures: Jaccard similarity (uni-gram comparison) [29], cosine simi-
larity (uni-gram comparison) [19], and Sørensen-Dice coefficient (bi-gram compar-
ison) [27, 28]

Among those, Levenshtein and Hamming distances appear to be the least appropriate
in our context due to their specifics. Levenshtein returns an integer number of required
edits, while the rest of the measures return normalized reals. Hence, it is not clear if
normalizing Levenshtein would make the result comparable to the other measures in a
way to use the same term similarity threshold. Hamming measure is applicable only to
the strings of equal lengths. Adding spaces to the shorter string, however, may lower
the precision of measurement. Cosine similarity is based on the same principle as Jac-
card, but is more computationally complex due to the presence of the square root in the
denominator. Therefore, we finally choose to use Jaro, Jaro-Winkler, Jaccard5, and
Sørensen-Dice for implementation and evaluation in our work. Further, it is briefly ex-
plained how the selected measures are computed.

Jaro similarity simj between two strings S1 and S2 is computed (1) as the minimal
number of one character transforms to be done to the first term (string) for getting the
second string in the compared pair.

5 It is expected that Cosine measure, being based on the same principle as Jaccard, is

not better than Jaccard in terms of performance, though takes more time to be com-
puted.







−
++∗

=
= otherwise

m
tm

S
m

S
m

mif
sim j)

||||
(3/1

0,0

21

, (1)

where: |S1|, |S2| are the lengths of the compared strings; m is the number of the matching
characters; and t is the half of the number of transposed characters. The characters are
matching if they are the same and their distance from the beginning of the string differs
by no more than ⌊𝑚𝑚𝑚𝑚𝑚𝑚(|𝑆𝑆1|, |𝑆𝑆2|)/2⌋ − 1. The number of transposed characters is the
number of matching but having different sequence order symbols.

Jaro-Winkler similarity measure 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗−𝑤𝑤 refines Jaro similarity measure by using a
prefix scale value p, which assigns better ratings to the strings that match from their
beginnings for a prefix length l. Hence, for the two strings S1 and S2 it is computed as
shown in (2).

 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗−𝑤𝑤 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 + 𝑙𝑙 ∗ 𝑝𝑝 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗), (2)

where: l is the length of a common prefix (up to a maximum of 4 characters);
p is a constant scaling factor meaning how much the similarity value is adjusted up-
wards for having common prefixes (up to 0.25, otherwise the measure can become
larger than 1; [26] suggests that p = 0.1).

Sometimes Winkler’s prefix bonus 𝑙𝑙 ∗ 𝑝𝑝 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) is given only to the pairs hav-
ing Jaro similarity value higher that a particular threshold. This threshold is suggested
[26] to be equal to 0.7.

Jaccard similarity index 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 is a similarity measure for finite sets, characters
in our case. It is computed, for the two strings S1 and S2, as the ratio between the cardi-
nalities of the intersection and union of the character sets in S1 and S2 as shown in (3).

 𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗 = (|𝑆𝑆1| ∩ |𝑆𝑆2|)/(|𝑆𝑆1| ∪ |𝑆𝑆2|) (3)

Finally, the Sørensen-Dice coefficient is computed by counting identical character
bi-grams in S1 and S2 and relating these to the overall number of bi-grams (4).

)/ (
21

2 SSsd nnnsim += ≡ , (4)

where: ≡n is the number of bi-grams found in S1 and also in S2;
21 SS nn , are the numbers

of all bi-grams in S1 and S2 respectively.
For the proper use of the implemented SSM functions in the context of terms com-

parison and grouping, it is necessary to determine what would be a reasonable threshold
to distinguish between (semantically) similar and different terms. For finding that out,
the following cases in string comparison need to be taken into account.

Full Positives (FP). In this case, evaluated character strings are fully the same,
which clearly gives similar (the same) terms.

Full Negatives (FN). In this case, evaluated character strings are very different and
the terms in these strings carry different semantics. This is also a clear situation and is
characterized by low values of similarity measures.

https://en.wikipedia.org/w/index.php?title=Scaling_factor&action=edit&redlink=1

Partial Positives (PP). In this case, evaluated character strings are partially the same
and the terms in these strings carry the same or similar semantics. The terms in such
strings are similar, though it may not be fully clear. The following are different catego-
ries of terms that fall into this case: the words in the terms have different endings (e.g.
plural/singular forms); different delimiters are used (e.g. “-”, or “–”, or “ - ”); a symbol
is missing, erroneously added, or misspelled (a typo); one term is the sub-string of the
other (e.g. subsuming the second); one of the strings contains unnecessary extra char-
acters (e.g. two or three spaces instead of one, or noise).

Partial Negatives (PN). In this case, evaluated character strings are partially the
same but the terms in these strings carry different semantics. The terms in such strings
are different, though it may not be fully clear. The following are the categories that fall
into this case: the terms in the compared strings differ by a very few characters, but
have substantially different meanings (e.g. “deprecate” versus “depreciate”); the com-
pared multi-word terms have common word(s) but fully differ in their meanings (e.g.
“affect them” versus “effect them”). These PN are the hardest case to be detected.

The test set of term pairs falling into the cases and categories described above has
been manually developed6. For each pair of terms in this test set, all four selected string
similarity measures have been computed. The extract is presented in Table 2.

Table 2: Similarity measures for different test cases

6 The test set and computed term similarity values are publicly available at

https://github.com/OntoElect/Data/blob/master/STG/Test-Set.xls

Ca-
se

Cate-
gory

Terms Pair Sørensen-
Dice

Jaccard Jaro Jaro-
Winkler

Different
(FN)

whirled | world 0.0 0.5 0.790 0.811
traces | creta 0.0 0.833 0.588 0.588
time domain | ontology lifecycle 0.0 0.428 0.445 0.445

Same (FP) identical strings | identical strings 1.0 1.0 1.0 1.0

Si
m

ila
r S

em
an

tic
s (

PP
)

Ex
tra

ch

ar
ac

-
te

rs
 *system?problems | system problems 0.814 0.769 0.936 0.936

sad data mining | sqr data mining 0.769 0.818 0.859 0.873

C
om

m
on

pa

rts

(w
or

ds
) marcov chain monte carlo methods |

monte carlo methods 0.782 0.766 0.629 0.666

data mining algorithm | data mining 0.642 0.666 0.842 0.904
cation error | error 0.533 0.333 0.427 0.427

Ty
po

s fraud detection | froud ditection 0.714 0.916 0.859 0.887
monte carlo | monte ??rlo 0.7 0.727 0.878 0.927
data mining | data minin 0.941 0.875 0.969 0.981

D
iff

er
e

nt

de
lim

ite computer science | computerscience 0.896 0.916 0.979 0.987
serial episodes | serial&&episodes 0.827 0.818 0.936 0.961
data cube | data_cube 0.75 0.777 0.925 0.955

D
iff

er
en

t
en

di
ng

s network structure | network structures 0.969 1.0 0.981 0.988
time complexity | time complexities 0.896 0.833 0.981 0.951
value | values 0.888 0.833 0.918 0.951

D
iff

er
en

t S
e-

m
an

tic
s

C
om

m
on

pa

rts

(w
or

ds
)

database | military base 0.400 0.500 0.410 0.410
brainstorm | stormy weather 0.363 0.428 0.509 0.509
iron clad | iron maiden 0.444 0.636 0.804 0.882
jellyfish | fish tank 0.352 0.307 0.614 0.614
four delegates | delegated authority 0.451 0.666 0.557 0.557

https://github.com/OntoElect/Data/blob/master/STG/Test-Set.xls

Table 3: Average string similarity measure values for different categories of term pairs
from the test set

Case / Category Items in
Test Set

Sørensen-
Dice

Jaccard Jaro Jaro-
Winkler

Different strings (FN) 6 0.03 0.45 0.55 0.55
Identical strings (FP) 3 1.00 1.00 1.00 1.00
Similar Semantics (PP) 32 0.71 0.72 0.63 0.70
- Unnecessary (extra) characters 7 0.8401 0.8820 0.8714 0.8784
- Common parts (words) 6 0.7122 0.7280 0.6375 0.7043
- Typos 6 0.7797 0.8637 0.8863 0.9220
- Different delimiters 6 0.7860 0.8473 0.9125 0.9442
- Different endings 7 0.8911 0.9135 0.9410 0.9590
Different Semantics (PN) 18 0.89 0.89 0.89 0.91
- Common parts (words) 11 0.4336 0.5221 0.6161 0.6408
- Very few character differences 7 0.8826 0.8845 0.8914 0.9059

Total: 59

Table 4: Term similarity thresholds chosen for experimental evaluation

Method
Term Similarity Thresholds

Min Ave-1 Ave-2 Max
Sørensen-Dice 0.71 0.76 0.83 0.89
Jaccard 0.72 0.77 0.83 0.89
Jaro 0.63 0.72 0.80 0.89
Jaro-Winkler 0.70 0.77 0.84 0.91

The average values of all four chosen similarity measures for each category have

been computed using all the test set term pairs falling into this category. These values
are presented in Table 3. Term similarity thresholds have to be chosen such that full
and partial negatives are regarded as not similar, but full and partial positives are re-
garded as similar. Hence, for the case of partial positives, the thresholds have to be
chosen as minimal of all the case categories, and for the partial negatives – as the max-
imal of all the case categories. The values of case thresholds are shown in bold in Table
3. These are further used as the margins for relevant threshold intervals in our experi-
ments. These intervals have been evenly split by the four threshold points, as presented
in Table 4. The requirements for partial positives and negatives unfortunately contradict
to each other. For example, if a threshold is chosen to filter out partial negatives, also
some of the partial positives will be filtered out. Therefore, subsuming that partial neg-
atives are rare, it has been decided to use the thresholds for partial positives.

string theory | string format 0.583 0.571 0.812 0.887
V

er
y

fe
w

ch

ar
ac

te
r

di
ffe

re
nc

es

deprecate against | depreciate against 0.909 1.0 0.903 0.941
alternately move | alternatively move 0.933 0.916 0.9 0.94
affect them | effect them 0.9 0.758 0.906 0.906

4 OntoElect and the Refinement of the THD Algorithm

OntoElect, as a methodology, seeks for maximizing the fitness of the developed ontol-
ogy to what the domain knowledge stakeholders think about the domain. Fitness is
measured as the stakeholders’ “votes” – a measure that allows assessing the stakehold-
ers’ commitment to the ontology under development, reflecting how well their senti-
ment about the requirements is met. The more votes are collected, the higher the com-
mitment is expected to be. If a critical mass of votes is acquired (say 50%+1, which is
a simple majority vote), it is considered that the ontology meets the requirements satis-
factorily.

Unfortunately, direct acquisition of requirements from domain experts is not very
realistic. The experts are expensive and not willing to do the work, which falls out of
their core activity. That is why the OntoElect approach focuses on the indirect collec-
tion of the stakeholders’ votes by extracting these from high quality and reasonably
high impact documents authored by the stakeholders.

An important feature to be ensured for knowledge extraction from text collections is
that the dataset needs to be representative to cover the opinions of the domain
knowledge stakeholders satisfactorily fully. OntoElect suggests a method to measure
the terminological completeness of the document collection by analysing the saturation
of terminological footprints of the incremental slices of the document collection [2].

The approach followed in our work is finding the terminological core of a document
collection by measuring terminological saturation [2, 3]. This measurement is done us-
ing our terminological difference measure (thd, [2]) which is a variant of a Manhattan
distance measure (see e.g. [18]) or Minkovski’s distance with p=1 [38].

The full texts of the documents from a collection are grouped in datasets in the order
of their timestamps. As pictured in Fig. 1 (a), the first dataset D1 contains the first por-
tion of (inc) documents. The second dataset D2 contains the first dataset D1 plus the
second incremental slice of (inc) documents. Finally, the last dataset Dn contains all the
documents from the collection.

At the next step of the OntoElect workflow, the bags of multi-word terms
B1, B2, …, Bn are extracted from the datasets D1, D2, …, Dn together with their signifi-
cance (c-value) scores, using UPM Term Extractor software [36]. An example of an
extracted bag of terms is shown in Fig. 1 (b).

(a) (b)

Fig. 1: (a) Incrementally enlarged datasets in OntoElect; (b) An example of a bag of terms ex-
tracted by UPM Term Extractor [36].

At the subsequent step, every extracted bag of terms Bi, i = 1, …, n is processed as
follows. Firstly, an individual term significance threshold (eps) is computed to cut off
those terms that are not within the majority vote. The sum of c-values with individual
values above eps form the majority vote if this sum is higher than ½ of the sum of all
c-values. Secondly, insignificant term candidates are cut-off at c-value < eps. Thirdly,
the normalized scores are computed for each individual term: n-score = c-value /
max(c-value). Finally, the result is saved in the bag of retained significant terms Ti.
After this step only significant terms, that represent the majority vote, are considered.
Ti are then evaluated for saturation by measuring pair-wise terminological difference
between the subsequent bags Ti and Ti+1, i = 0, …, n-1. So far in OntoElect, it has been
done by applying the baseline THD algorithm7 [2] presented in Fig. 2.

Algorithm THD. Compute Terminological Difference between Bags of Terms
Input:
 Ti, Ti+1 – the bags of terms with grouped similar terms.
 Each term Ti.term is accompanied with its T.n-score.
 Ti, Ti+1 are sorted in the descending order of T.n-score.
 M – the name of the string similarity measure function to compare terms
 th – the value of the term similarity threshold from within [0,1]
Output: thd(Ti+1, Ti), thdr(Ti+1, Ti)
1. sum := 0
2. thd := 0
3. for k := 1, │Ti+1│
4. sum := sum + Ti+1.n-score[k]
5. found : = .F.
6. for m := 1, │Ti│
7. if (Ti+1.term[k] = Ti.term[m]) if (M(Ti+1.term[k], Ti.term[m], th))
8. then
9. thd += │Ti+1.n-score[k] - Ti.n-score[m]│
10. found := .T.
11. end for
12. if (found = .F.) then thd += Ti+1.n-score[k]
13. end for
14. thdr := thd / sum

Fig. 2: Baseline THD algorithm [2] for measuring terminological difference in a pair of bags of
terms and its refinement. Baseline THD uses string equalities for comparing terms (dashed
rounded rectangle in line 7). The refinements are shown in solid rounded rectangles. Refined
THD has two more input parameters (M and th) and uses M for comparing terms (line 7).

In fact, the THD algorithm accumulates the n-score differences, in the thd value for
the bag Ti+1, if there were the same terms in Ti and Ti+1. If there was no the same term
in Ti, it adds the n-score of the orphan to the thd value of Ti+1. After thd has been com-
puted, the relative terminological difference thdr receives its value as thd divided by
the sum of n-scores in Ti+1.

Absolute (thd) and relative (thdr) terminological differences are computed for fur-
ther assessing if Ti+1 differs from Ti more than the individual term significance threshold

7 The baseline THD algorithm is implemented in Python and is publicly available at
https://github.com/OntoElect/Code/tree/master/THD

https://github.com/OntoElect/Code/tree/master/THD

eps. If not, it implies that adding an increment of documents to Di for producing Di+1

did not contribute any noticeable amount of new terminology. Hence, the subset Di+1 of
the overall document collection may have become terminologically saturated. How-
ever, to obtain more confidence about the saturation, OntoElect suggests that more sub-
sequent pairs of Ti and Ti+1 are evaluated. If stable saturation is observed, then the pro-
cess of looking for a minimal saturated sub-collection could be stopped.

Algorithm STG. Group similar terms in the bag of terms
Input:
 T – a bag of terms. Each term T.term is accompanied with its
 T.n-score. T is sorted in the descending order of T.n-score.
 M – the name of the string similarity measure function to compare
 terms
 th – the value of the term similarity threshold from within [0,1]
Output: T with grouped similar terms
1. sum := 0
2. for k = 1,│T│
3. term := T.term[k]
4. n-score := T.n-score[k]
5. count := 1
6. for m = k+1,│T│
7. if M(term, T.term[m], th)
8. then
9. n-score += T.n-score[m]
10. count += 1
11. remove(T[m])
12. end for
13. T.n-score[k] := n-score / count
14. end for

Fig. 3: Similar Term Grouping (STG) algorithm

Our task is to modify the THD algorithm in a way to allow finding not exactly the
same but sufficiently similar terms by applying string similarity measures with appro-
priate thresholds, as explained in the previous Section 3. For that, the preparatory sim-
ilar term grouping step has been introduced to avoid duplicate similarity detection. For
each of the compared bags of terms Ti and Ti+1 the similar term grouping (STG) algo-
rithm is applied at this preparatory step – see Fig. 3. After term grouping is accom-
plished for both bags of terms, the refined THD algorithm (Fig. 2 – rounded rectangles)
is performed to compute the terminological difference between Ti and Ti+1.

5 Evaluation

This section reports on our evaluation of the refined THD algorithm against the baseline
THD [2]. This evaluation is performed using the workflow of the OntoElect Require-
ments Elicitation Phase [3] and three document collections from different domains:
TIME, DMKD-300, and DAC-cleaned. Section 5.1 outlines the set-up of our evaluation
experiments. The document collections are presented in Section 5.2.
The results of our evaluation experiments are discussed in Section 5.3.

5.1 The Set-up of the Experiments

The objective of our experiments is to find out if using the refined THD algorithm
yields quicker terminological saturation compared to the use of the baseline THD algo-
rithm. We are also looking at finding out which string similarity measures best fit for
measuring terminological saturation.

For making the results comparable, the same datasets, created from the document
collections as described in Section 5.2, are fed into both the refined and baseline THD
algorithms. For each document collection, we apply:

1. The refined THD – sixteen times – one per individual string similarity measure M 8
(Section 3) and per individual term similarity threshold th (Table 4); and

2. The baseline THD – one time as it does not depend on a term similarity threshold

The values of: (i) the number of retained terms; (ii) absolute terminological differ-
ence (thd); and (iii) the time taken to perform similar terms grouping by the STG algo-
rithm (sec) are measured.

Finally, to verify if our SSM implementations, and hence the STG and refined THD
algorithms, are correct, we check if the refined THD algorithm implementation returns
the results which are satisfactorily similar to that of the baseline THD when the terms
similarity threshold is set to 1.00. This threshold value straightforwardly means that
only equivalent strings have to be regarded as similar terms.

All the computations are run using a Windows 7 64-bit PC with: Intel® Core™ i5
CPU, M520 @ 2.40 GHz; 8.0 Gb on-board memory; NVIDIA Geforce GT330M GPU.

5.2 Experimental Data

The document collections used in our experiments are all composed of the papers pub-
lished at the peer-reviewed international venues in three different domains:

• The TIME collection contains the full text papers of the proceedings of the Time
Representation and Reasoning (TIME) Symposia series9 published between 1994
and 2013

• The DMKD-300 collection is composed of the subset of full text articles from the
Springer journal on Data Mining and Knowledge Discovery10 published between
1997 and 2010

• The DAC-cleaned collection comprises the subset of full text papers of the Design
Automation Conference11 published between 2004 and 2006

8 The functions for all the four selected SSMs have been implemented in Python 3.0

and return real values within [0, 1]. These functions are publicly available at:
https://github.com/OntoElect/Code/tree/master/STG/core/methods

9 http://time.di.unimi.it/TIME_Home.html
10 https://link.springer.com/journal/10618
11 http://dac.com/

https://github.com/OntoElect/Code/tree/master/STG/core/methods
http://time.di.unimi.it/TIME_Home.html
https://link.springer.com/journal/10618
http://dac.com/

The chronological order of adding documents is chosen for generating experimental
datasets from the documents of all the three collections using our Dataset Generator
[37]. The characteristics of all the document collections and generated datasets are sum-
marized in Table 5.

Table 5: The characteristics of the used document collections and datasets

Document
Collection

Paper Type
and Layout

No
Doc Noise Processing Inc No

Datasets
TIME conference, IEEE

2-column
437 manually

cleaned
manual conversion
to plain text, automated
dataset generation

20 papers 22

DMKD-300 journal, Springer
1-column

300 not cleaned,
moderately noisy

automated [37] 20 papers 15

DAC-
cleaned

conference, IEEE
2-column

506 quite noisy automated, stop terms
removal [37]

20 papers 26

5.3 Results and Discussion

The measurements, taken in our experiments for different collections and terms simi-
larity threshold points, are not presented in the paper in a tabular form due to page
limits. Instead, the results are presented diagrammatically in figures below and made
available in full, including values, publicly online12.

The results of our measurements of terminological saturation (thd) are pictured
in Fig. 4–6. Saturation (thd) measurements reveal that the refined THD algorithm de-
tects terminological saturation faster than the baseline THD algorithm, no matter what
the chosen term similarity measure (M) or similarity threshold (th) is. If the results for
different measures are compared, then it may be noted that the respective saturation
curves behave differently, depending on the similarity threshold point.

Overall, as one could see in Fig. 4–6 (a) – (d), the use of the Sørensen-Dice measure
demonstrates the least volatile behaviour along the terms similarity threshold points.
Sørensen-Dice also results in making the refined THD algorithm to detect saturation
slower than the three other measures for Min, Ave-1, and Ave-2. For Max, it is as fast
as Jaro and slightly slower than Jaccard and Jaro-Winker.

One more observation is that, integrally, all the implemented term similarity
measures coped well with retaining significant terms from all the three document col-
lections. This is indicated by the co-locations of terminology contribution peaks at the
diagrams (a) – (d) in Fig. 4–6. One can see in Fig. 4–6(d), for the Max threshold point,
that all the string similarity methods curves follow the shape of the baseline THD curve
quite closely. Hence, they have the peaks exactly at the same thd measurement points
where the baseline has, pointing at more new significant terms. The most sensitive to
terminology contribution peaks was Sørensen-Dice.

12 https://github.com/OntoElect/Experiments/tree/master/STG. File names are {TIME,

DMKD-300, DAC-cleaned}-Results-Alltogether-{min, ave, ave2, max, 1}-th.xlsx.

https://github.com/OntoElect/Experiments/tree/master/STG

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
Legend:

Fig. 4: Terminological saturation measurements on TIME for different similarity threshold points

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
Legend:

Fig. 5: Terminological saturation measurements on DMKD-300 for different similarity threshold
points

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
Legend:

Fig. 6: Terminological saturation measurements on DAC-cleaned for different similarity thresh-
old points

The diagrams in Fig. 7–9 show the times spent by the STG algorithm to detect and
group similar terms for different chosen term similarity thresholds. One particular dia-
gram corresponds to a particular terms similarity threshold point (Min, Ave-1, Ave-2,
and Max).

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
 Legend:

Fig. 7: Time (sec) spent by the STG algorithm for grouping similar terms on TIME bags of terms

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
 Legend:

Fig. 8: Time (sec) spent by the STG algorithm for grouping similar terms on DMKD-300 bags
of terms

 (a) Min term similarity thresholds (b) Ave-1 term similarity thresholds

 (c) Ave-2 term similarity thresholds (d) Max term similarity thresholds
 Legend:

Fig. 9: Time (sec) spent by the STG algorithm for grouping similar terms on DAC-cleaned bags
of terms

It needs to be mentioned that the introduction of string similarity measures in the
computation of terminological difference (THD algorithm) increases the computational

complexity quite substantially. As it could be noticed in Fig. 7–9 (a) – (d), the times
grow with the value of the terms similarity threshold (th) and reach thousands of sec-
onds for Max threshold values. It is worth acknowledging that Sørensen-Dice and Jac-
card are substantially more stable to the increase of th than Jaro and Jaro-Winkler.
Sørensen-Dice takes, however, times more time than Jaccard. From the other hand,
Jaccard is not very sensitive to terminological peaks and retains significantly less terms
than Sørensen-Dice.

Fig. 10 pictures the proportions of the retained to all extracted terms when saturation
has been detected, computed at different terms similarity threshold points, for the bags
of terms extracted from our three document collections. It is clear from Fig. 10 that
Sørensen-Dice yields the second highest proportions for all the collections and used
term similarity thresholds, after the baseline, which does not group terms.

 (a) TIME collection (b) DMKD-300 collection (c) DAC-cleaned collection
 Legend:

Fig. 10: The proportions of retained to all extracted terms for different term similarity measures
per document collections

Finally, the terms similarity threshold is set to 1.00 and the refined THD implemen-
tation is evaluated for all three collections for the pairs of the bags of terms in a few
pair vicinity of the saturation points. The task is to check if the refined THD with similar
terms grouping: (i) detects terminological saturation at the same point as the baseline
THD, therefore, thd values are measured; and (ii) retains the same number of significant
terms as the baseline THD, therefore, the numbers of retained terms are measured. We
are also interested in comparing the time taken to accomplish term grouping (STG).

The results for the DMKD-300 collection are presented graphically in Fig. 11. The
results for the TIME and DAC-cleaned collections13 are very much similar to these for
DMKD-300 and do not change our conclusion and recommendation.

It may be seen in Fig. 11 (a) and (b) that Jaro and Jaro-Winkler implementations
fully repeat the baseline THD results, both in the measured thd values and numbers of
retained significant terms. Sørensen-Dice behaves similarly to Jaro and Jaro-Winkler
up to the saturation point. After that, it returns slightly lower thd and retains slightly

13 These results could be accessed at https://github.com/OntoElect/Experi-

ments/tree/master/STG. File names are {TIME, DMKD-300, DAC-cleaned}-
Results-Alltogether-1-th.xlsx.

https://github.com/OntoElect/Experiments/tree/master/STG
https://github.com/OntoElect/Experiments/tree/master/STG

less significant terms. This behaviour is acceptable as the measurements after the satu-
ration point are of marginal interest. Jaccard implementation however appears to return
significantly lower thd values and significantly less retained terms at all measurement
points – before and after detecting saturation. Jaccard also detects saturation one meas-
urement point earlier than the rest of the SSMs, which is not correct for this threshold
(1.00).

Fig. 11 (c) reveals that, for being accurate in measurements at the very high threshold
of 1.00, Jaro and Jaro-Winkler take too much of a computational overhead. Sørensen-
Dice and Jaccard however remain more stable to the increase of the th, similarly as it
was before for Ave1, Ave2, and Max threshold points.

 (a) thd values (b) numbers of retained terms (c) time taken by STG
Legend:

Fig. 11: Evaluation of the refined THD implementation at th = 1.00 on DMKD-300 bags of terms.
Vertical dashed lines mark terminological saturation point.

The summary of our experimental findings is collected in Table 7 in the form of the
rankings. We rank the performance of all the evaluated SSMs and the baseline THD on
a scale from 1 (the best) to 5 (the worst) for every document collection and every terms
similarity threshold point (Min, Ave1, Ave2, Max) within each collection. We also look
at the average rankings for all four thresholds points.

The aspects we look at in this ranking are: (i) the fastness of detecting terminological
saturation, the faster – the better (Fig. 4 – 6); (ii) the number of retained significant
terms, the more – the better (Fig. 10); and (iii) the time taken by the method to accom-
plish the computation, the less – the better (Fig. 7 – 9).

Table 8 contains the values of performance indices for different SSMs and the base-
line THD regarding the four terms similarity thresholds points and their average values.
This is done for two cases: (a) taking into account the execution time criterion (Less
Time Taken in Table 7); and (b) not taking the execution time criterion into account. It
has been done to analyse the value of using an SSM if the computational overhead is
not important. The values were calculated by summing all the ranks for different col-
lections and criteria taken from the corresponding threshold point rows of Table 7.

Table 7: The ranking of the evaluated SSMs

 Rank (1-5)
Crite-
rion

String Similarity
Threshold

Baseline
THD

Sørensen-
Dice Jaccard Jaro Jaro-

Winkler
TIME Collection

Fa
st

er
 d

et
ec

-
tio

n
of

 sa
tu

-
ra

tio
n

Min 5 4 1 1 1
Ave1 5 4 1 1 1
Ave2 5 4 1 1 1
Max 5 3 1 3 1

Average 5 3.75 1 1.5 1

M
or

e
sig

ni
fi-

ca
nt

 te
rm

s r
e-

ta
in

ed

Min 1 2 3 5 4
Ave1 1 2 4 5 3
Ave2 1 2 5 3 4
Max 1 2 5 3 4

Average 1 2 4.25 4 3.75

Le
ss

 ti
m

e
ta

ke
n

Min 1 5 3 2 4
Ave1 1 4 2 3 5
Ave2 1 3 2 5 4
Max 1 3 2 5 4

Average 1 3.75 2.25 3.75 4.25
DMKD-300 Collection

Fa
st

er
 d

et
ec

-
tio

n
of

 sa
tu

-
ra

tio
n

Min 5 4 3 1 1
Ave1 5 4 1 1 1
Ave2 5 4 1 1 1
Max 5 1 1 1 1

Average 5 3.25 1.5 1 1

M
or

e
sig

ni
fi-

ca
nt

 te
rm

s r
e-

ta
in

ed

Min 1 2 3 5 4
Ave1 1 2 4 5 3
Ave2 1 2 5 3 4
Max 1 2 5 3 4

Average 1 2 4.25 4 3.75

Le
ss

 ti
m

e
ta

ke
n

Min 1 5 2 3 4
Ave1 1 4 2 5 3
Ave2 1 3 2 5 4
Max 1 3 2 5 4

Average 1 3.75 2 4.5 3.75
DAC-cleaned Collection

Fa
st

er
 d

et
ec

-
tio

n
of

 sa
tu

-
ra

tio
n

Min 5 4 3 1 2
Ave1 5 4 1 3 1
Ave2 5 4 1 3 1
Max 5 4 1 1 1

Average 5 4 1.5 2 1.25

M
or

e
sig

ni
fi-

ca
nt

 te
rm

s r
e-

ta
in

ed

Min 1 2 3 5 4
Ave1 1 2 4 3 5
Ave2 1 2 5 3 4
Max 1 2 5 3 4

Average 1 2 4.25 3.5 4.25

Le
ss

 ti
m

e
ta

ke
n

Min 1 5 2 3 4
Ave1 1 4 2 5 3
Ave2 1 3 2 5 4
Max 1 3 2 5 4

Average 1 3.75 2 4.5 3.75

These sums have further been subtracted from the highest rank value14 in order to
revert to “the higher – the better” scale in Table 8. Performance indices are also pictured
in Fig. 12.

Table 8: The performance indices of the evaluated SSMs with and without accounting
for taken execution time

Threshold Baseline
THD

Sørensen-
Dice Jaccard Jaro Jaro-

Winkler
(a) Execution time criterion is taken into account

Min 12 0 10 7 5
Ave1 12 3 12 2 8
Ave2 12 6 9 4 6
Max 12 10 9 4 6

Average (Table 7) 12 4.75 10 4.25 6.25
(b) Execution time criterion is not taken into account

Min 0 0 2 0 2
Ave1 0 0 3 0 4
Ave2 0 0 0 4 3
Max 0 4 0 4 3

Average (Table 7) 0 1 1.25 2 3

(a) Accounting for execution time (b) Without accounting for execution time

 Legend:

Fig. 12: Performance indices of the evaluated SSMs per terms similarity thresholds with (a) and
without (b) taking their execution time ranks into account. The points in the rounded dashed
rectangles represent the averages for all the thresholds.

Regarding the evaluation of correctness at th = 1.00, the SSM, that behaves both
correctly, up to the saturation point, and computationally efficiently, is Sørensen-Dice.
Jaro and Jaro-Winkler, though are correct, take too much of the computational overhead
at this high th value. Jaccard is not fully correct.

Let us now summarize the comparative analysis of the performance of all the SSMs
in the two cases, (a) and (b), presented in Table 8 and Fig. 12.

14 The rank value is the sum of all ranks for a method within a particular threshold in

Table 7. The highest rank value indicates the lowest performance. For case (a) it
equals to 12, which is for Sørensen-Dice at Min threshold. For case (b) it equals to
4.

In case (a), when the computation time is taken into account in the comparative rat-
ing, the summary is the following. Probably surprisingly, Jaccard, which is computa-
tionally the most lightweight SSM (Fig. 7–9), demonstrates the best overall perfor-
mance. In this case, it still does not outperform the baseline THD because: (i) it takes
extra time for STG; and (ii) it retains less significant terms15. Jaccard is the best bal-
anced on all evaluation criteria, compared to the rest of the evaluated SSMs. One im-
portant drawback of Jaccard is that it does not perform fully correctly at th = 1.00.
Therefore, the use of Jaccard may be recommended in the cases of low terms similarity
thresholds (like Min or Ave1) and hard constraints on the time of computation. Perfor-
mance indices are also good for Sørensen-Dice and Jaro-Winkler which both work ac-
ceptably correctly at th = 1.00. These two SSMs appear to be mutually complementary
in the terms that: (i) Jaro-Winkler is better than Sørensen-Dice at lower terms similarity
thresholds, like Min or Ave1; (ii) Sørensen-Dice outperforms Jaro-Winkler at higher
terms similarity thresholds, like Ave2 or Max. Jaro in case (a) is a clear negative outlier
and is not recommended for use.

In case (b), when the computation time is not taken into account in the comparative
rating, the summary is different. As it is clearly seen in Fig 12(b), all the SSMs outper-
form the baseline THD on average and at Max threshold. Jaro-Winkler is the best per-
forming for Min and Ave1 thresholds, but gives up to Jaro at Ave2 and Max. It is also
outperformed by Sørensen-Dice at Max. However, Jaro-Winkler appears to be most
balanced in performance regarding all the four thresholds, which is highlighted by the
Avg-All value. Jaccard in case (b) is a clear negative outlier and therefore cannot be
recommended for use.

If the assessments for the cases (a) and (b) are combined, the following recommen-
dation could be given. At an expense of a substantially higher execution time, the THD
algorithm refined by Jaro-Winkler (at all thresholds except Max) or Sørensen-Dice (at
Max threshold) are our recommended choices for measuring terminological saturation.
Jaro-Winkler is the first choice, because it is the most balanced in performance for all
the evaluated thresholds.

6 Conclusions and Future Work

In this paper, we investigated if a simple string equivalence measure, used in the base-
line THD algorithm, could be outperformed if a carefully chosen string similarity meas-
ure is used instead.

Overall, we found out that the use of STG, even at high terms similarity thresholds,
rewards quite substantially in reducing the volume of processed data. The numbers of
these gains are provided in the Terminological Core part of Table 9. Depending on how
fast saturation is achievable in different collections, the use of STG allowed lowering
the size of a terminological core by 22 to 46 percent.

15 Which should be so as the baseline THD does not group terms. Hence, any alternative

method that does similar terms grouping retains less significant terms.

It is also remarkable that, in general, the numbers of retained significant terms, due
to their grouping, were also decreased substantially, by 44 to 72 percent depending on
the collection. At the same time, the individual term significance thresholds (eps) were
very slightly changed. This hints that the use of STG did not result in a noticeable loss
of significant terms.

Because of applying our THD algorithm refinement, using all four evaluated SSMs,
terminological saturation has been detected faster. Hence, in that sense, the refined
THD with STG outperformed the baseline method. Three of the SSMs gave also ac-
ceptably correct results at th = 1.00. A somewhat discouraging result was, however,
that the use of SSMs for STG causes a substantial computational overhead. Therefore,
none of the methods involving STG outperformed the baseline THD integrally if exe-
cution time is an important criterion for assessing performance – case (a) in Table 8
and Fig.12. If execution time is not very important and may be disregarded, the result
is substantially different – case (b) in Table 8 and Fig.12. Overall, putting together the
findings in these two cases, the recommendation was made to use the THD algorithm
refined by Jaro-Winkler (at all thresholds except Max) or Sørensen-Dice (at Max thresh-
old) for measuring terminological saturation. Jaro-Winkler was recommended as the
first choice, because it is the most balanced in performance for all the evaluated thresh-
olds.

Table 9: The gains of the use of STG and refined THD

 Satura-
tion

Point

Terminological Core Terms

 No
Papers

Volume,
Mb

%
Baseline

Extracted
Terms

Retained
Terms

%
Baseline eps

 TIME (Max)
Baseline D11 220 6.55 100.00 287887 7110 100.00 23.77
Jaccard D6 120 3.53 53.89 190263 2717 38.21 21.00
Sorensen-Dice D7 140 4.17 63.66 200176 3629 51.04 22.00
Jaro-Winkler D6 120 3.53 53.89 190263 2717 38.21 21.00

 DMKD-300 (Max)
Baseline D3 60 3.14 100.00 89617 7110 100.00 17.00
Jaccard D2 45 2.46 78.34 67913 2135 30.03 15.50
Sorensen-Dice D2 45 2.46 78.34 67913 2453 34.50 15.50
Jaro-Winkler D2 45 2.46 78.34 67913 1963 27.61 15.50

 DAC-cleaned (Max)
Baseline D23 460 12.40 100.00 514364 20558 100.00 15.51
Jaccard D14 280 7.46 60.16 320473 7406 36.02 15.51
Sorensen-Dice D16 320 8.54 68.87 356749 11528 56.08 15.51
Jaro-Winkler D14 280 7.46 60.16 320473 8736 42.49 15.51

The plans for our future work are implied by the presented results. Firstly, we would

like to admit that the test set of term pairs (Table 2) is not big enough to consider the
choice of the thresholds fully reliable. Therefore, we will extend the test set in short
term and apply a variation of a clustering technique to check our thresholds. Secondly,
we would like to explore the ways to improve the performance of the Sørensen-Dice
and Jaro-Winkler measures implementations, as their high computational complexity
is the only obstacle to outperform the rest of the evaluated SSMs and, possibly, the

baseline. To put it more generally, we plan to explore the ways to improve the perfor-
mance of similar terms grouping, as the times taken by the STG algorithm are too long.
Thirdly, we are interested in finding out if a similar terms grouping algorithm, using
Sørensen-Dice or Jaro-Winkler, would be plausible for grouping features while build-
ing feature taxonomies. This task is on the agenda for the second (Conceptualization)
phase of OntoElect [3, 39].

Acknowledgements

The research leading to this publication has been performed in part in cooperation be-
tween the Department of Computer Science of Zaporizhzhia National University, the
Ontology Engineering Group of the Universidad Politécnica de Madrid, the Applied
Probability and Informatics Department at the RUDN University, and Springer-Verlag
GmbH. The first author is funded by a PhD grant awarded by Zaporizhzhia National
University and the Ministry of Education and Science of Ukraine. The second author is
supported by the FPI grant (BES-2017-082511) under the DATOS 4.0: RETOS Y
SOLUCIONES - UPM project (TIN2016-78011-C4-4-R) funded by Ministerio de
Economía, Industria y Competitividad of Spanish government and EU FEDER funds.
The fourth author acknowledges the support of the “RUDN University Program 5-100”.
The authors would like to acknowledge the contributions by Alyona Chugunenko and
Rodion Popov for their research contributions leading to this publication. In particular,
they helped develop the approach for term grouping and implement the software for it.
The collection of full text Springer journal papers dealing with Knowledge Manage-
ment, including DMKD-300, has been provided by Springer-Verlag. The authors would
also like to express their gratitude to anonymous reviewers whose comments and sug-
gestions helped improve the paper.

References

1. Chugunenko, A., Kosa, V., Popov, R., Chaves-Fraga, D., Ermolayev, V.: Refining Termi-
nological Saturation using String Similarity Measures. In: Ermolayev, V, et al. (eds.): Proc.
ICTERI 2018. Volume I: Main Conference, Kyiv, Ukraine, May 14-17, 2018, CEUR-WS
vol. 2105, pp. 3--18, online

2. Tatarintseva, O., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying ontology fitness in
OntoElect using saturation- and vote-based metrics. In: Ermolayev, V., et al. (eds.) Revised
Selected Papers of ICTERI 2013, CCIS, vol. 412, pp. 136--162 (2013)

3. Ermolayev, V.: OntoElecting requirements for domain ontologies. The case of time domain.
EMISA Int J of Conceptual Modeling 13(Sp. Issue), pp. 86--109 (2018)

4. Fahmi, I., Bouma, G., van der Plas, L.: Improving statistical method using known terms for
automatic term extraction. In: Computational Linguistics in the Netherlands, CLIN 17
(2007)

5. Wermter, J., Hahn, U.: Finding new terminology in very large corpora. In: Clark, P.,
Schreiber, G. (eds.) Proc. 3rd Int Conf on Knowledge Capture, K-CAP 2005, pp. 137--144,
Banff, Alberta, Canada, ACM (2005)

http://ceur-ws.org/Vol-2105/10000003.pdf
http://ceur-ws.org/Vol-2105/10000003.pdf
http://ceur-ws.org/Vol-2105

6. Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition
algorithms. In: Proc. 6th Int Conf on Language Resources and Evaluation, LREC 2008,
Marrakech, Morocco (2008)

7. Daille, B.: Study and implementation of combined techniques for automatic extraction of
terminology. In: Klavans, J., Resnik, P. (eds.) The Balancing Act: Combining Symbolic and
Statistical Approaches to Language, pp. 49--66. The MIT Press. Cambridge, Massachusetts
(1996)

8. Caraballo, S. A., Charniak, E.: Determining the specificity of nouns from text. In: Proc. 1999
Joint SIGDAT Conf on Empirical Methods in Natural Language Processing and Very Large
Corpora, pp. 63--70 (1999)

9. Astrakhantsev, N.: ATR4S: toolkit with state-of-the-art automatic terms recognition meth-
ods in scala. arXiv preprint arXiv:1611.07804 (2016)

10. Medelyan, O., Witten, I. H.: Thesaurus based automatic keyphrase indexing. In: Mar-
chionini, G., Nelson, M. L., Marshall, C. C. (eds.) Proc. ACM/IEEE Joint Conf on Digital
Libraries, JCDL 2006, pp. 296--297, Chapel Hill, NC, USA, ACM (2006)

11. Ahmad, K., Gillam, L., Tostevin, L.: University of surrey participation in trec8: Weirdness
indexing for logical document extrapolation and retrieval (wilder). In: Proc. 8th Text RE-
trieval Conf, TREC-8 (1999)

12. Sclano, F., Velardi, P.: TermExtractor: A Web application to learn the common terminology
of interest groups and research communities. In: Proc. 9th Conf on Terminology and Artifi-
cial Intelligence, TIA 2007, Sophia Antipolis, France (2007)

13. Frantzi, K. T., Ananiadou, S.: The c/nc value domain independent method for multi-word
term extraction. J. Nat. Lang. Proc. 6(3), pp. 145--180 (1999)

14. Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., Cofino, T.: Glossary extraction and
utilization in the information search and delivery system for IBM Technical Support. IBM
System Journal 43(3), pp. 546--563 (2004)

15. Astrakhantsev, N.: Methods and software for terminology extraction from domain-specific
text collection. PhD thesis, Institute for System Programming of Russian Academy of Sci-
ences (2015)

16. Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction through domain
modelling. In: Proc. 10th Int Conf on Terminology and Artificial Intelligence, TIA 2013,
Paris, France (2013)

17. Badenes-Olmedo, C., Redondo-García, J. L., Corcho, O.: Efficient clustering from distribu-
tions over topics. In: Proc. K-CAP 2017, ACM, New York, NY, USA, Article 17, 8 p.
(2017)

18. Gomaa, W. H., Fahmy. A. A.: A Survey of Text Similarity Approaches. Int J Comp Appl
68(13), pp. 13--18 (2013)

19. Yu, M., Li, G., Deng, D., Feng, J.: String similarity search and join: a survey. Front. Comput.
Sci. 10(3), pp. 399--417 (2016)

20. Miller, G.A., Beckwith, R., Fellbaum, C.D., Gross, D., Miller, K.: WordNet: An online lex-
ical database. Int. J. Lexicograph. 3(4), pp. 235--244 (1990)

21. Arnold, M., Ohlebusch, E.: Linear Time Algorithms for Generalizations of the Longest
Common Substring Problem. Algorithmica 60(4), pp. 806--818 (2011)

22. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10 (8), pp. 707--710 (1966)

23. Hamming, R. W.: Error detecting and error correcting codes. Bell System Technical Journal
29(2), pp. 147--160 (1950)

24. Monger, A., Elkan, C.: The field-matching problem: algorithm and applications. In: Proc.
2nd Int Conf on Knowledge Discovery and Data Mining, pp. 267--270, AAAI Press (1996)

25. Jaro, M. A.: Advances in Record-Linkage Methodology as Applied to Matching the 1985
Census of Tampa, Florida. J Amer Stat Assoc 84(406), pp. 414--420 (1989)

26. Winkler, W. E.: String comparator metrics and enhanced decision rules in the Fellegi-Sunter
model of record linkage. In: Proc. Section on Survey Research Methods. ASA, pp. 354--359
(1990)

27. Dice, L. R.: Measures of the amount of ecologic association between species. Ecology 26(3),
pp. 297--302 (1945)

28. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons.
Kongelige Danske Videnskabernes Selskab 5 (4), pp. 1--34 (1948)

29. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11, 37--50
(1912)

30. Huang, A.: Similarity Measures for Text Document Clustering. In: Proc. 6th New Zealand
Computer Science Research Student Conference (NZCSRSC2008), Christchurch, New Zea-
land, pp. 49--56 (2008)

31. Singhal, A.: Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering 24 (4), pp. 35--43 (2001)

32. Lu, J., Lin, C., Wang, W., Li, C., Wang, H.: String similarity measures and joins with syn-
onyms. In: Proc. 2013 ACM SIGMOD Int Conf on the Management of Data, pp. 373--384
(2013)

33. Lee, H., Ng, R. T., Shim, K.: Power-law based estimation of set similarity join size. Proc. of
the VLDB Endowment 2(1), pp. 658--669 (2009)

34. Tsuruoka, Y., McNaught, J., Tsujii, J., Ananiadou, S.: Learning string similarity measures
for gene/protein name dictionary look-up using logistic regression. Bioinformatics 23(20),
pp. 2768--2774 (2007)

35. Qin, J., Wang, W., Lu, Y., Xiao, C., Lin, X.: Efficient exact edit similarity query processing
with the asymmetric signature scheme. In: Proc. of the 2011 ACM SIGMOD Int Conf on
Management of data, pp. 1033--1044. ACM New York, USA (2011)

36. Corcho, O., Gonzalez, R., Badenes, C., Dong, F.: Repository of indexed ROs. Deliverable
No. 5.4. Dr Inventor project (2015)

37. Kosa, V., Chaves-Fraga, D., Naumenko, D., Yuschenko, E., Badenes-Olmedo, C., Ermola-
yev, V., Birukou, A.: Cross-evaluation of automated term extraction tools by measuring ter-
minological saturation. In: Bassiliades, N., et al. (eds.) ICTERI 2017. Revised Selected Pa-
pers. CCIS, vol. 826, pp. 135--163 (2018)

38. Minkowski, H.: Geometrie der Zahlen. Bibliotheca Mathematica Teubneriana, Band 40
Johnson Reprint Corp., New York-London, 256 pp. (1968) – in German

39. Moiseenko, S., Ermolayev, V.: Conceptualizing and formalizing requirements for ontology
engineering. In: Antoniou, G., Zholtkevych, G. (eds.) Proc. ICTERI 2018 PhD Symposium,
Kyiv, Ukraine, May 14-17, CEUR-WS vol. 2122, pp. 35--44 (2018) online

https://www.tandfonline.com/toc/uasa20/current
https://en.wikipedia.org/wiki/Plant_sociology
https://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
https://en.wikipedia.org/wiki/Amit_Singhal
http://singhal.info/ieee2001.pdf

	DOI: https://doi.org/10.1007/978-3-030-13929-2_3
	1 Introduction
	2 Related Work
	2.1 Automated Term Extraction
	2.2 Text Similarity Measurement
	2.3 Contributions

	3 The Choice of SSMs and Terms Similarity Thresholds
	4 OntoElect and the Refinement of the THD Algorithm
	5 Evaluation
	5.1 The Set-up of the Experiments
	5.2 Experimental Data
	5.3 Results and Discussion

	6 Conclusions and Future Work
	Acknowledgements
	References

