
Conformance Test Cases for
the RDF Mapping Language (RML)

Pieter Heyvaert1, David Chaves-Fraga2[0000−0003−3236−2789], Freddy
Priyatna2[0000−0002−9292−4010], Oscar Corcho2[0000−0002−9260−0753], Erik

Mannens1, and Anastasia Dimou1

1 IDLab, Department of Electronics and Information Systems, Ghent University –
imec

2 Ontology Engineering Group, Universidad Politécnica de Madrid

Abstract. Knowledge graphs are often generated using rules that ap-
ply semantic annotations to certain data sources. Software tools exe-
cute these rules and generate or virtualise the corresponding RDF-based
knowledge graph. R2RML is a W3C recommended language to write
such rules for relational databases, while RML provides an extension
of R2RML to incorporate support for other data sources, such as data
in CSV, XML, and JSON format. When developing a tool to execute
rules, for each set of rules the expected knowledge graph should be gen-
erated, i.e., the tool conforms to the language’s specification. As part of
its standardisation process, a set of test cases was created for R2RML
to assess tools conformance. However, no test cases were proposed so far
for knowledge graphs generated from other data sources. In this work,
we generated an initial set of reusable test cases to assess knowledge
graphs generation from heterogeneous data sources. These test cases
rely on R2RML test cases and can be used by any tool, regardless of
the programming language, to evaluate the tool’s conformance to the
RML specification. We tested the conformance of two RML processors:
the RMLMapper and CARML. The results show that the RMLMapper
passes all test cases regarding CSV, XML, and JSON format, and most
test cases for RDBs, but fails the ones for automatic datatyping of liter-
als. CARML passes most test cases regarding the CSV, XML, and JSON
format, with exception of test cases that deal, for example, with multiple
RDF terms generation. Developers can now determine how conformant
their tools are to the RML specification and users can use this confor-
mance results to determine the most suitable tool for their use cases.

Keywords: RML · R2RML · Test Cases

1 Introduction

Knowledge graphs are often generated based on rules that apply semantic anno-
tations to certain data. For example, the DBpedia knowledge graph is generated
by applying classes and predicates of the DBpedia ontology to Wikipedia [1].



Software tools execute these rules and generate corresponding RDF triples and
quads [2], which materialize knowledge graphs. In the past, custom scripts pre-
vailed, but lately rule-driven tools emerged. Such tools distinguish the rules
that define how RDF terms and triples are generated from the tool that exe-
cutes them. R2RML [3] is the W3C recommended language to define such rules
for generating knowledge graphs from data in relational databases (RDBs). An
R2RML processor is a system that, given a set of R2RML rules and a relational
database, generates an output RDF dataset. Examples of R2RML processors
are, e.g., Ultrawrap [4], Morph-RDB [5], Ontop [6], and XSPARQL [7]. A subset
of them was included in the RDB2RDF Implementation Report [8] to determine
their conformance to the R2RML specification 3, i.e., the correct knowledge
graph is generated for a set of rules and certain relational database.

Extensions and adaptations were applied to R2RML to account for other
types of data sources, given that R2RML is focused on relational databases only,
such as RML [9], XSPARQL [7], xR2RML [10], KR2RML [11], and D2RML [12].
RML provides an extension of R2RML to support heterogeneous data sources, in-
cluding different formats, e.g., CSV, XML, JSON, and access interfaces, e.g., files
and Web APIs. Similarly, RML processors emerged that execute RML rules, such
as the RMLMapper4, CARML5, GeoTriples6, and Ontario7. Unlike R2RML,
there are no test cases available to determine the conformance of the processors
to the RML specification. As a result, the processors are either not tested or
only tested with custom test cases, which do not necessarily assess every aspect
of the specification. Consequently, no implementation report is available that
allows comparing the different processors that generate knowledge graphs from
heterogeneous data sources based on the conformance to the specification. This
way it is hard to determine the most suitable processor for a certain use case.

In this work, (i) we focused on RML and introduce an initial set of RML test
cases, which contains 297 test cases based on the existing R2RML test cases.
However, instead of only considering relational databases as data sources, as
it occurs for the R2RML test cases, we also consider data in CSV, XML, and
JSON format. Furthermore, (ii) we tested the conformance of the RMLMapper
and CARML: every test case is executed by each processor and we noted if the
generated knowledge graph matches the expected one. The corresponding imple-
mentation report is available at http://rml.io/implementation-report. This
allows to determine which processor is the most suitable for a certain use case.
For example, do users want a processor that supports the complete specifica-
tion, or do they prefer a processor that does not support certain aspects of the
specification, but executes the rules faster?

The test cases results shows that the RMLMapper passes all test cases re-
garding CSV, XML, and JSON format, and most test cases for RDBs, but fails

3 Some of those available in the report are no longer actively maintained and used
4 RMLMapper, https://github.com/RMLio/rmlmapper-java
5 CARML, https://github.com/carml/carml
6 GeoTriples, https://github.com/LinkedEOData/GeoTriples
7 Ontario, https://github.com/WDAqua/Ontario

2



the test cases for automatic datatyping of literals. CARML passes most test cases
regarding CSV, XML, and JSON format, except of the test cases that deal, for
example, with multiple RDF terms generation. Users can now determine how
conformant the different processors are to the RML specification and use this
conformance to determine the most suitable processor for their use cases.

The remainder of the paper is structured as follows. In Section 2, we discuss
related work. In Section 3, we discuss the test cases. In Section 4, we elaborate
on the test cases execution and results. In Section 5, we conclude the paper.

2 Related work

In this section, we describe the related work that is relevant to the paper. First,
we explain the most important knowledge graph generation language specifi-
cations, including R2RML and RML, and processors that execute those rules.
Second, we discuss the differences between R2RML and RML. Finally, we de-
scribe the R2RML test cases, how they are defined and implemented and their
corresponding implementation report with results of a few processors.

2.1 Knowledge graph generation languages and tools

R2RML [3] is the W3C recommended language for describing rules to generate
RDF from data in RDBs. Currently, many tools support this specification. These
tools follow either an Extract-Transform-Load (ETL) process, where a knowledge
graph is materialized, e.g., DB2Triples8 and R2RMLParser9, or they provide
virtual RDF views, focusing more on formalizing the translation from SPARQL
to SQL and optimizing the resulted SQL query, e.g., Morph-RDB10 and Ontop11.

We describe in more details pioneering tools for executing R2RML rules:
DB2Triples is a tool for extracting data from relational databases, semantically
annotating the data extracts according to R2RML rules and generating Linked
Data. The R2RMLParser [13] deals in principle with incremental Linked Data
generation. Each time a knowledge graph is generated, not all data is used,
but only the one that changed (so-called incremental transformation). Morph-
RDB [5] and Ontop [6] adapt the algorithm defined by Chebotko, Lu, and Fo-
touhi [14] on SPARQL-to-SQL translation, using the information provided by
the R2RML rules. Both apply several semantic optimizations (e.g., self join elim-
ination) that generate efficient SQL queries to speed up the evaluation time.

RML [9] is defined as an extension of R2RML to specify rules for generating
knowledge graphs from data in different formats, such as CSV, JSON, XML,
and different access interfaces, e.g., open data connectivity and Web APIs [15].
Different other languages build upon RML for generating knowledge graphs from
heterogeneous data sources, e.g., xR2RML [10] or RMLC [16].

8 DB2triples, https://github.com/antidot/db2triples
9 R2RMLParser, https://github.com/nkons/r2rml-parser

10 Morph-RDB, https://github.com/oeg-upm/morph-rdb
11 Ontop, https://github.com/ontop/ontop

3



A set of processors that support the RML specification are proposed. The
RMLMapper is a Java library and command line interface that executes RML
rules to generate RDF. Following the same approach, CARML executes RML
rules, but also includes its own extensions, such as MultiTermMap (to deal
with arrays) and XML namespace (to improve XPath expressions). GeoTriples
is a processor that generates and executes RML rules for generating RDF from
geospatial data from different sources. The processor supports data stored in raw
files (shapefiles, CSV, KML, GML, and so on), but also geospatial RDBs such as
PostGIS12 and MonetDB13. The generated RDF is based on well-known geospa-
tial vocabularies, such as GeoSPARQL [17] and stSPARQL [18]. Ontario [19]
is a federated query processor that uses RML rules to transform heterogeneous
data sources during the query processing. Basically, the processor performs the
generation using RML during the query processing step and executes federated
SPARQL queries over the resulted RDF graphs. These processors are evaluated
using ad-hoc examples or feasibility approaches, but a thorough representation
of their capabilities is not provided. For that reason, we notice that RML test
cases are needed to assess the capabilities of the different processors.

2.2 R2RML and RML differences

Table 1. The differences between R2RML and RML

R2RML RML

input reference Logical Table Logical Source

data source language SQL (implicit) Reference Formulation (explicit)

value reference column
Logical reference

(valid expression acc.

Reference Formulation)

iteration per row (implicit)
per record

(explicit – valid expression

acc. Reference Formulation)

RML is an extension of R2RML and, thus, follows the core concepts of
R2RML’s specification, such as Triples Maps, Term Maps, Subject Maps, and
so on. However, there is a difference on the reference to the data to support
heterogeneous data sources with respect to their format, e.g. CSV, XML, JSON,
and access interface, e,g. files or Web APIs (see Table 1).

Logical Source A Logical Source extends R2RML’s Logical Table and describes
the input data source used to generate the RDF. The Logical Table is only able

12 https://postgis.net/
13 https://www.monetdb.org/

4



to describe relational databases, whereas the Logical Source defines different
heterogeneous data sources, including relational databases.

Reference Formulation As RML is designed to support heterogeneous data
sources, data sources in different formats needs to be supported. One refers
to data in a specific format according to the grammar of a certain formulation,
which might be path and query languages or custom grammars. For example,
one can refer to data in an XML file via XPath and in a relational database
via SQL. To this end, the Reference Formulation was introduced indicating the
formulation used to refer to data in a certain data source.

Iterator In R2RML it is specified that processors iterate over each row to gener-
ate RDF. However, as RML is designed to support heterogeneous data sources,
the iteration pattern cannot always be implicitly assumed. For example, iter-
ating over a specific set of objects is done by selecting them via a JSONPath
expression. To this end, the Iterator was introduced which determines the it-
eration pattern over the data source and specifies the extract of data used to
generate RDF during each iteration. The iterator is not required to be specified
if there is no need to iterate over the input data.

Logical Reference When referring to values in a table or view of a relational
database, R2RML relies on column names. However, as RML is designed to
support heterogeneous data sources, rules may also refer to elements and objects,
such as in the case of XML and JSON. Consequently, references to values should
be valid with respect to the used reference formulation. For example, a reference
to an attribute of a JSON object should be a valid JSONPath expression. To
this end, (i) the rml:reference is introduced to replace rr:column, (ii) when a
template is used, via rr:template, the values between the curly brackets should
have an expression that is valid with respect to the used reference formulation,
and (iii) rr:parent and rr:child of a Join Condition should also have an
expression that is valid with respect to the used reference formulation.

2.3 W3C recommendations and their test cases

In the context of Semantic Web, several specifications were recommended by
W3C, such as SPARQL [20], RDF [2], SHACL [21], Direct Mapping of relational
data to RDF (DM) [22], and R2RML [3]. Each of these specifications has several
related tools that support them. A set of test cases was defined for each one
of them (SPARQL test cases14, RDF 1.1 test cases15, SHACL test cases16, and
R2RML and Direct Mapping test cases17, respectively) that provides useful in-
formation to choose the tool that fits better to certain needs. It is also a relevant

14 https://www.w3.org/2001/sw/DataAccess/tests/r2
15 http://www.w3.org/TR/rdf11-testcases/
16 http://w3c.github.io/data-shapes/data-shapes-test-suite/
17 https://www.w3.org/TR/2012/NOTE-rdb2rdf-test-cases-20120814/

5



step in the standardisation process of an technology or specification. We describe
the R2RML in more details as it is related to the scope of this paper.

Determining the conformance of tools executing R2RML rules in the process
of RDF generation is a step to provide objective information about the features of
each tool. For this reason, the R2RML test cases [23] were proposed. It provides
a set of 63 test cases. Each test case is identified by a set of features, such as the
SQL statements to load the database, title, purpose, specification reference, re-
view status, expected result, and corresponding R2RML rules. All the test cases
are semantically described using the RDB2RDF-test18 and Test Metadata Vo-
cabulary19. Several R2RML processors were assessed for their conformance with
the R2RML specification running the test-cases. The results are available in the
R2RML implementation-report [8]. The results are also annotated semantically
using the Evaluation and Report Language (EARL) 1.0 Schema20.

3 RML Test cases

In this section, we propose test cases to determine the conformance of RML pro-
cessors to the RML specification. The proposed test cases are based on the
R2RML test cases, but they take into account different heterogeneous data
sources and the corresponding differences in RML (see Section 2.2). Our pre-
liminary set of test cases includes (i) adjusted R2RML test cases for relational
databases (including MySQL21, PostgreSQL22, and SQL Server23) and (ii) new
test cases for files in the CSV, XML (with XPath as the reference formulation),
and JSON format (with JSONPath as the reference formulation). The test cases
are described at http://rml.io/test-cases/ and the corresponding files are
available at https://github.com/rmlio/rml-test-cases. In Section 3.1, we
describe the data model that is used to represent the test cases. In Section 3.2,
we elaborate on the different files making up a test case. In Section 3.3, we
discuss the differences between the R2RML and RML test cases.

3.1 Data model

We describe the test cases semantically to increase their reusability and shara-
bility. To this end, we created a semantic data model24, with as main entity the
test case (see Figure 1). For each test case, the following details are described:
unique identifier, title, description, relevant aspect of the RML specification,
data sources (optional), expected knowledge graph or error, and RML rules.

18 http://purl.org/NET/rdb2rdf-test#
19 https://www.w3.org/TR/2005/NOTE-test-metadata-20050914/
20 https://www.w3.org/TR/EARL10/
21 https://www.mysql.com/
22 https://www.postgresql.org/
23 https://www.microsoft.com/en-us/sql-server/
24 http://rml.io/test-cases/#datamodel

6



Fig. 1. Data model of the RML test cases

To provide the corresponding semantic descriptions, the model uses mostly
the Evaluation and Report Language (EARL) 1.0 Schema25, the Test case mani-

25 https://www.w3.org/TR/EARL10/, with prefix earl

7



fest vocabulary26, the Test Metadata vocabulary27, and the Data Catalog Vocab-
ulary28. A test case is annotated with the classes earl:TestCase, test:TestCase,
and mf:ManifestEntry. The identifier, title, description, and the specific aspect
of the RML specification that is being tested are added as datatype properties.
The files that are provided as input to the tools are linked to the test cases
via test:informationResourceInput and dcterms:hasPart. The file with the
RML rules is also linked via rml-tc:rules29. The objects of these properties
are of the class dcat:Dataset, which in turn link to a dcat:Distribution

that includes a link to a file. The expected output, whether that is a knowl-
edge graph or an error, is linked via test:expectedResults, mf:result, and
dcterms:hasPart. In the case of a knowledge graph, the object of these prop-
erties is a dcat:Dataset, linked to a dcat:Distribution, to describe the file
containing the graph. In the case of an error, we link to the expected error.

3.2 Test case files

Each test case consists of a set of files that contain the input data sources, the
RML rules, and the expected RDF output. In practice, the files are organized
as follows: all files for a single test case are contained in a single folder.

There are three types of files for each test case:

– 0 or more data source files for CSV (with extension .csv), XML (with ex-
tension .xml), and JSON (with extension .json), or 1 file with SQL statements
to create the necessary tables for relational databases (called resource.sql);

– 1 file with the RML rules (in Turtle format, called mapping.ttl); and
– 0 or 1 file with the expected RDF (in N-Quads format, called output.nq).

Distinct test cases assess different behaviours of the processors. Certain test
cases assess the behaviour of the tools when (i) the required data sources are not
available, and others when (ii) an error occurs and no output is generated. In
the former, no data sources files or SQL statements are provided. In the latter,
no file with the expected RDF is provided. The test cases are independent of
how the processors materialize the knowledge graph: a data dump, as done by
the RMLMapper, or on the fly, as done by Ontario [24].

3.3 Differences with R2RML test cases

For most R2RML test cases, we created an RML variant for CSV, XML, JSON,
MySQL, PostgreSQL, and SQL Server, leading to 6 RML test cases per R2RML
test case. For R2RML test cases that focus on specific features of SQL queries,
we only created 3 RML test cases, i.e., for MySQL, PostgreSQL, and SQL Server.

26 http://www.w3.org/2001/sw/DataAccess/tests/test-manifest#, with prefix mf
27 https://www.w3.org/2006/03/test-description#, with prefix test
28 https://www.w3.org/TR/vocab-dcat/, with prefix dcat
29 http://rml.io/ns/test-cases, with prefix rml-tc

8



For test cases with CSV, XML, and JSON files as data sources, we created the
corresponding files with the data based on the tables of the relational databases.
For CSV, we used the table created by the SQL statements of the R2RML test
case and stored it as a CSV file. For XML, the name of the table was used for
the root of the XML document and every row of the table was used to create an
XML element. Within this element, elements were created for each column and
their values are the values of the corresponding columns in the table. For JSON,
we followed a similar approach as XML. The file contains a JSON object at the
root with the name of the table as the only attribute. This attribute has as value
an array, where each element of the array corresponds with a row in the table.
For each row, attributes were created for each column and their values are the
values of the corresponding columns in the table.

Data errors. 2 of the R2RML test cases expect a data error to happen, e.g.,
when the subject IRI of an entity cannot be generated. In this case, an error is
thrown and no knowledge graph is generated. With RML for entities where no
subject IRI can be generated there is also no output generated, but, in contrast
to R2RML, for the other entities the corresponding output is still generated.
Therefore, for the corresponding RML test cases the processors can still throw
an error, but the generation of the knowledge graph must not be halted.

Inverse expressions. 3 of the R2RML test cases are designed to test the use
of inverse expressions30. However, inverse expressions are only used to optimize
the knowledge graph generation and no differences are observed in the generated
knowledge graph. Thus, whether inverse expressions are used by a processor or
not cannot be verified by such test cases. Thus, we do not include them for RML.

SQL-specific features. 18 of the R2RML test cases focus on specific features of
SQL queries, e.g., a duplicate column name in a SELECT query. As there are no
corresponding RML test cases for CSV files, XML files with XPath, and JSON
files with JSONPath, we only provide 54 corresponding test cases for MySQL,
PostgreSQL, and SQL Server.

Null values. 1 of the R2RML test cases tests null values in the rows. However, a
corresponding RML test case cannot be provided for the CSV and XML format,
because both formats do not support null values.

Spaces in columns. 1 of the R2RML test cases is designed to test the behaviour
when dealing with spaces in the columns of the SQL tables. However, a corre-
sponding RML test case cannot be provided for the XML format, because it
does not allow spaces in names.

In total, we have 297 test cases: 39 for CSV, 38 for XML, 41 for JSON, and
180 for relational databases. Of these 297, 255 test cases expect an knowledge
graph to be generated, while 36 expect an error that halts the generation.

30 https://www.w3.org/TR/r2rml/#inverse

9



4 Test case execution and results

In this section, we describe the executing of the test cases and their results
for two RML processors: the RMLMapper and CARML. We detail on (i) the
method for running the test cases and obtaining the results, which are anno-
tated semantically, and (ii) the implementation report similar as proposed for
R2RML31. After this, we present the results of the RMLMapper and CARML.

4.1 Method

We define a method to run the RML test cases over RML processors and generate
the corresponding results. The main goal is to facilitate the testing process and
provide a general solution for running the test cases over other RML processors
that can be developed in the future. The method consists of two main steps: (i)
assessing if a processor passes every test case and (ii) annotating the obtained
results as RDF using the EARL Schema through a set of YARRRML rules [25].

We implemented a Java-based tool for checking the conformance of the test
cases over different RML processors. At this moment, it is able to evaluate the
test cases for JSON, CSV and XML formats. We relied on the test framework
of each processor to execute the RDB test cases. If a new processor wants to be
added to test its conformance, the framework only needs to have access to the
corresponding output of each test-case. Then it checks, using the same method
for all processors, if the output is the same as the correct one, if an error that
is expected has really thrown, etc. The code is available online32 together with
a Web page showing the results of all tested tools33. It generates as output two
CSV files with the results and the metadata needed to generate the corresponding
RDF.

The results are semantically annotated, as the test cases, using the EARL
Schema. Each test case evaluated by a tool is annotated as an earl:Assertion

with the properties: earl:subject with the URI of the tool, earl:assertedBy
with the identifier of who performed the evaluation, earl:test with the URI of
the test and earl:result with the result of the test-case.

Three types of results are possible: “passed”, “failed”, and “inapplicable”.
Passed (earl:passed) is used either when the actual output matches the ex-
pected output when no error is expected, or when the tool throws an error when
an error is expected. Failed (earl:failed) is used either when the actual output
does not match the expected output if no error is expected, the processor re-
turns an error trying to execute a test or the tool does not throw error if an error
is expected. Inapplicable (earl:inapplicable) is used when the tool clearly
states that specific features used in a test case are not supported. The results
also provide its type (earl:TestResult) and its mode (earl:automatic for all
these cases). We created a set of YARRRML rules to generate these annotations
following the EARL Schema that, using the outputs of the test cases.

31 https://www.w3.org/TR/rdb2rdf-implementations/
32 https://github.com/RMLio/rml-implementation-report
33 http://rml.io/implementation-report

10



4.2 Results

Table 2. Results of the RMLMapper

RMLMapper CSV XML JSON MySQL PostgreSQL SQL Server Total

passed 39 41 38 55 55 55 283

failed 0 0 0 5 5 5 15

inapplicable 0 0 0 0 0 0 0

Table 3. Results of CARML

CARML CSV XML JSON MySQL PostgreSQL SQL Server Total

passed 29 28 28 0 0 0 85

failed 10 10 13 0 0 0 33

inapplicable 0 0 0 60 60 60 180

We perform the test-cases over two processors: RMLMapper and CARML.
In Table 2 we show the results for the RMLMapper processor. It passes all CSV,
JSON and XML test cases, but fails in the same 5 test cases for the RDBs. The
failures are related to the automatic datatyping of literal for RDBs specified by
R2RML34. RMLMapper expects to pass the failed test-cases in next versions of
the processor. The effort prediction to pass these test-cases is not very much
since the failures depend on the general processor, not on the used RDBMS.
Once they have been solved for one RDBMS they will automatically pass over
the rest.

In Table 3 we show the results for the CARML processor. It partially passes
the CSV, JSON and XML test cases, but it does not provide support for any
of the RDBs test cases. The failures are related to the unsupported for multiple
Subject Maps, multiple Predicate Maps, and Named Graphs. The developers of
the tool declare that CARML will support these features in next versions of the
processor. However, at the moment of writing, we do not have any information
about if CARML will provide support for RDBs.

Finally, we can declare that testing a RML processor with the defined cases
and analysing the obtained results offers a general view of the current status of
it. These results also give useful information to the tool developers on knowing
where they should put their effort to improve the conformance of the processor.

34 https://www.w3.org/TR/r2rml/#dfn-natural-rdf-literal

11



5 Conclusion

With the introduction of an initial set of RML test cases (i) developers can de-
termine how conformant their RML processors are to the RML specification, and
(ii) users can use the test cases results to select the most appropriate processor
for a specific use case. The results of the test cases execution with the RMLMap-
per and CARML show that the CSV, XML, and JSON formats are almost fully
supported, but RDBs cause difficulties or are not supported at all. However, the
aspects of the RML specification whose test cases failed can be supported by the
processors in the future through (minor) implementation updates.

Our set of test cases is based on the R2RML test cases, and therefore, it
covers a big part of the RML specification, as it is based on R2RML. However,
as the R2RML test cases focus on relational databases, they do not take into
account the specifics of hierarchical data formats, such as nested structures in
JSON and XML files, which can be used with RML. Therefore, further research
should be directed towards creating new test cases that tackle these specifics
taking into account the differences between the different hierarchical formats
and their corresponding reference formulations.

Acknowledgements

The described research activities were funded by Ghent University, imec, Flan-
ders Innovation & Entrepreneurship (AIO), the Research Foundation – Flanders
(FWO), and the European Union. The work presented in this paper is partially
supported by the Spanish Ministerio de Economı́a, Industria y Competitividad
and EU FEDER funds under the DATOS 4.0: RETOS Y SOLUCIONES - UPM
Spanish national project (TIN2016-78011-C4-4-R) and by an FPI grant (BES-
2017-082511).

References

[1] Jens Lehmann et al. “DBpedia - A large-scale, multilingual knowledge base
extracted from Wikipedia”. In: Semantic Web 6 (2015), pp. 167–195.

[2] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Con-
cepts and Abstract Syntax. Recommendation. World Wide Web Consor-
tium (W3C), Feb. 2014. url: http://www.w3.org/TR/rdf11-concepts/.

[3] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to
RDF Mapping Language. W3C Recommendation. http://www.w3.org/TR/r2rml/.
W3C, 2012.

[4] Juan F. Sequeda and Daniel P. Miranker. “Ultrawrap: SPARQL execution
on relational data”. In: Web Semantics: Science, Services and Agents on
the WWW (2013). issn: 1570-8268. doi: https://doi.org/10.1016/j.
websem.2013.08.002. url: http://www.sciencedirect.com/science/
article/pii/S1570826813000383.

12



[5] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. “Formalisation and
Experiences of R2RML-based SPARQL to SQL Query Translation Using
Morph”. In: 23rd International Conference on WWW. 2014. isbn: 978-1-
4503-2744-2.

[6] Diego Calvanese et al. “Ontop: Answering SPARQL Queries over Rela-
tional Databases”. In: Semantic Web Journal (2017).

[7] Stefan Bischof et al. “Mapping between RDF and XML with XSPARQL”.
In: Journal on Data Semantics (2012). issn: 1861-2040. doi: 10.1007/
s13740-012-0008-7. url: http://dx.doi.org/10.1007/s13740-012-
0008-7.

[8] Souripriya Das, Seema Sundara, and Richard Cyganiak. RDB2RDF Im-
plementation Report. W3C Note. https://www.w3.org/TR/rdb2rdf-implementations/.
W3C, 2012.

[9] Anastasia Dimou et al. “RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data”. In: LDOW. 2014.

[10] Franck Michel et al. “Translation of Relational and Non-relational Databases
into RDF with xR2RML”. In: WEBIST. 2015.

[11] Jason Slepicka et al. “KR2RML: An Alternative Interpretation of R2RML
for Heterogenous Sources.” In: COLD. 2015.

[12] Alexandros Chortaras and Giorgos Stamou. “D2RML: Integrating hetero-
geneous data and web services into custom RDF graphs”. In: Proceedings
of the LDOW. CEUR, ceur-ws. org 2073 (2018).

[13] Nikolaos Konstantinou et al. “Exposing scholarly information as Linked
Open Data: RDFizing DSpace contents”. In: The Electronic Library 32.6
(2014), pp. 834–851. doi: 10.1108/EL-12-2012-0156.

[14] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. “Semantics preserving
SPARQL-to-SQL translation”. In: Data & Knowledge Engineering 68.10
(2009), pp. 973–1000.

[15] Anastasia Dimou et al. “Machine-interpretable Dataset and Service De-
scriptions for Heterogeneous Data Access and Retrieval”. In: Proceedings of
the 11th International Conference on Semantic Systems. SEMANTICS ’15.
ACM, 2015. isbn: 978-1-4503-3462-4. doi: 10.1145/2814864.2814873.
url: http://doi.acm.org/10.1145/2814864.2814873.

[16] David Chaves-Fraga et al. “Virtual Statistics Knowledge Graph Genera-
tion from CSV files”. In: Emerging Topics in Semantic Technologies: ISWC
2018 Satellite Events. Vol. 36. Studies on the Semantic Web. IOS Press,
2018, pp. 235–244.

[17] Robert Battle and Dave Kolas. “Geosparql: enabling a geospatial semantic
web”. In: Semantic Web Journal 3.4 (2011), pp. 355–370.

[18] Manolis Koubarakis and Kostis Kyzirakos. “Modeling and querying meta-
data in the semantic sensor web: The model stRDF and the query language
stSPARQL”. In: Extended Semantic Web Conference. Springer. 2010, pp. 425–
439.

[19] Maria-Esther Vidal et al. “Semantic Data Integration of Big Biomedical
Data for Supporting Personalised Medicine”. In: Current Trends in Se-

13



mantic Web Technologies: Theory and Practice. Springer, 2019, pp. 25–
56.

[20] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. Recom-
mendation. World Wide Web Consortium (W3C), Mar. 2013. url: https:
//www.w3.org/TR/sparql11-query/.

[21] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language
(SHACL). Recommendation. World Wide Web Consortium (W3C), 2017.
url: https://www.w3.org/TR/shacl/.

[22] Marcelo Arenas et al. A Direct Mapping of Relational Data to RDF. W3C
Recommendation. https://www.w3.org/TR/rdb-direct-mapping/. W3C, Sept. 2012.

[23] Boris Villazón-Terrazas and Michael Hausenblas. R2RML and Direct Map-
ping Test Cases. W3C Note. http://www.w3.org/TR/rdb2rdf-test-cases/. W3C,
2012.

[24] Anastasia Dimou et al. “What Factors Influence the Design of a Linked
Data Generation Algorithm?” In: Proceedings of the 11th Workshop on
Linked Data on the Web. Ed. by Tim Berners-Lee et al. Apr. 2018. url:
http://events.linkeddata.org/ldow2018/papers/LDOW2018_paper_

12.pdf.
[25] Pieter Heyvaert et al. “Declarative Rules for Linked Data Generation at

your Fingertips!” In: Proceedings of the 15th ESWC: Posters and Demos.
2018.

14


